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Abstract 

Purpose 

This study aimed to evaluate the biomechanical response or load transfer on the osteoporotic 

L1 vertebra under torsional loading. 

Methods 

To achieve this goal, a numerical model of osteoporotic vertebra in various trabecular bone 

degenerations was developed and tested. The mechanical behavior of the model was 

represented taking into account the anisotropic properties of the cancellous bone, which 

provided a more realistic mechanical picture of the biological subsystem. To ensure the 

reliability of osteoporotic degradation, the thinning of cortical bone and the appearance of 

gaps between trabecular bone and cortical bone were also taken into account when creating 

the models. 

Results 

Finite element (FE) analysis showed that the deformations of cortical bone thinning and 

detachment of the cortical bone from the trabecular tissue lead to local instability of the 

vertebrae. As a result, the cortical bone of a vertebra loses its load-bearing capacity, even if 

the strength limit is not reached. 

Conclusions 

The results obtained allow us to state that taking into account the thinning of the trabeculae, 

which creates voids, is extremely important for load-bearing capacity of osteoporotic 

vertebrae. However, a limitation of this study is the lack of experimental data to ensure 

consistency with the computer simulation results. 
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1.Introduction 

The vertebrae of the spine bear most of the vertical load placed on the body. The most loaded 

part of the spine is the lumbar spine, i.e., the spine fragment composed of L1–L5 vertebrae, 

which has to bear the essential part of the human-induced load compared to the other spinal 

parts [8], [13], [33]. 

From a medical point of view, harmful spinal pathology is one of the main health problems. 

Osteoporosis is one of the causes of the spinal pathology that spreads among people more and 

more widely. 



 

 

Osteoporosis is a disease characterized by decreased bone density and micro, sometimes 

macro damages of the bone tissue, resulting in increased brittleness of bones. Although 

osteoporosis affects the entire skeleton of the body, most osteoporotic fractures are associated 

with the spinal vertebrae. Specifically, compression-induced fracture of the spine usually 

occurs at the first vertebra of the lumbar spine (L1) [14]. 

Due to the above – listed reasons, the excessive deformation of the vertebrae is a very real 

problem in today's medicine. Prevailing existing methodologies for the diagnostic and 

prognosis of the pathologies and the excessive deformations of the human vertebrae are based 

on the analysis of computer tomography images [6].  

In medicine, the tool FRAX (Fracture Risk Algorithm) is used to predict the risk of a 

vertebral fracture. This tool is based only on human physiological parameters such as age, 

sex, height, weight, etc., and physical parameters such as bone mineral density (BMD) [35].  

These diagnostic techniques do not take into account all factors of vertebrae degeneration to 

predict the risk of vertebral fracture. Despite significant advances in the small-scale 

evaluation of the mechanical properties of lumbar bone tissue [23], [27], the understanding of 

osteoporotic changes and the contribution to functionality is not satisfactory. Therefore, the 

numerical analysis of the human vertebrae by taking into account the reasons affecting its 

deformations can be used to select the most effective treatment method [26]. 

In the work [24] healthy and osteoporotic vertebrae L1 were analysed to determine their 

biomechanical response. FE analysis shows that one of the most important factors in 

osteoporosis is the tendency to increase tension in the cancellous bone of the vertebra. 

Studies analysing spine under torsion [10], [15] suggested possible vertebral fractures using 

the mechanical criteria of plasticity and fracture, but did not take into account the relationship 

between vertebral deformity and loss of load-bearing capacity. 

In the works [3]-[5] there have already been studies of models of lumbar spine that considered 

osteoporotic changes in the trabecular bone of the vertebrae as a decrease in BMD. The 

above-mentioned studies did not consider the possibility of voids appearing in the trabecular 

bone and their impact on the local stability of an individual osteoporotic vertebra under 

torsional loading. The aim of this study is to advance knowledge of the macroscopic 

deformation behaviour of degenerated osteoporotic lumbar vertebrae by recovering the effects 

of nonlinear geometric deformations that cause cortical shell instability. 

Computational simulation methods can help analyse in more detail the degradation bone 

tissue and determine its effect on vertebral deformation, which cannot be tested with 

experimental methods [36]. Computational simulation can save time and reduce investigation 



 

 

costs. In addition to saving time, computer modelling eliminates the need for costly and time-

consuming laboratory testing. 

 

2. Materials and methods 

2.1. Motivation 

The mechanical state characteristics of the lumbar vertebrae in conditions of osteoporotic 

bone tissue degeneration are considered using structural analysis with the finite element 

method. The decision to develop this survey can be motivated by the following arguments. 

• New results can be obtained by exploring the already known continuous two-phase 

model. From a mechanical point of view, the essential properties of the vertebral body 

can be obtained by considering it on a macroscopic scale. The trabecular volume is 

viewed as a three-dimensional continuum, while the dense cortical layer is viewed as a 

thin shell. This two-phase model - cortical shell and trabecular volume - is 

mechanistically justified and is often examined in numerical modelling [2], [18]-[19], 

[29], [39]. The above partitioning problem is somewhat hypothetical. The 

classification of a specific subvolume into the cortical or trabecular phase can be based 

on CT imaging based on the value of the porosity (density) [12]. It has been observed 

that osteoporotic degeneration causes gross changes as a result of bone loss, but the 

mechanism of degradation is not trivial. Most of the absolute bone loss due to 

osteoporosis occurs in the interlayer of bone between the two phases. Cortical bone 

through the so-called intracortical bone layer, where pores exist, the transition zone is 

enlarged, is formed as shown in Figure 1 b, c [38]. This means a reduction in the 

thickness of the cortical layer. Furthermore, the concentrated reduction in degraded 

thickness in the presence of pores can be considered as an imperfection of potential 

instability factors. 

• New properties could be implemented by analysing virtual models, applying large 

displacement and deformation calculation methods. Finding deformation instability 

requires more enhanced nonlinear analysis. Instability is a process during which a 

given structure cannot sustain load in its initial form [21]. This is a buckling-type 

failure mechanism relevant to out-of-plane deformation of thin-walled structures, 

which are very sensitive to small imperfections. It is obvious that a vertebra looking 

like a stiffened cylindrical shell structure is potentially risky to instability. Therefore, 

the load-bearing capacity of the spine may be lost, not only by fracture but also by the 



 

 

occurrence of instability. Failure risk increases during osteoporotic degeneration 

because of the thinning of the cortical shell and the presence of imperfections. 

• A new quality could be achieved by the same technique — the FEM. In this study, the 

numerical finite element analysis is utilised to demonstrate the potential of this tool in 

the evaluation of the risk of osteoporotic degradation. The particular advantages of the 

finite element analysis will be explored by developing a universal finite element 

model able to solve various mechanical problems using the same geometry. On the 

other hand, the unified model integrates the external shell and the internal 3D solid 

while regarding different bonding between them. 

 

2.2. Development of model geometry 

A three-dimensional virtual model of the vertebra L1 was developed in several steps. Firstly, 

a CT scan was performed on a 48-year-old man. The resulting images were then processed 

using the free open source software 3D Slicer [40] and refined using MeshLab [42]. Using the 

semiautomatic tool in the 3D Slicer software, a region of interest was defined around L1, and 

its 3D volumetric image was segmented. A minimum threshold mode was set between 80 and 

100 to separate soft tissues from the vertebral body. The endplates, posterior bone elements 

and articular facets were not included in image analyses and were manually removed. 

The MeshLab output of the 3D volumetric image of L1 STL file was exported to the 

SolidWorks software environment [43], where final mesh rendering was performed and the 

surfaces were converted into a solid model of the lumbar vertebral body. Posterior bony 

elements are added manually to reflect the stiffening of the vertebra's back part. Two bony 

endplates are also added to reflect boundary conditions with the neighbouring trabecular 

bone. The final numerical model is shown in Figure 1 a. 

The internal geometry of the vertebral body is constructed to reflect both the healthy state and 

osteoporotic degeneration. The degree of degeneration is characterised by the reduction of the 

cortical bone thickness layer, tcor, which is dependent on the severity of osteoporosis. The 

classification of a specific subvolume into the cortical or trabecular phase was performed 

based on the values of porosity (density) [9]. 

The occurrence of voids between the two phases, cortical and trabecular bone, is introduced 

as unbonded contact using the contact tool of the ANSYS software [41]. 

Offsets of specific values are added to the top endplate to determine the bifurcation point and 

critical force. The lower endplate of the vertebra is rigidly fixed. 

 



 

 

2.3. Mechanical properties 

The cortical phase is modelled as an isotropic elasto-plastic continuum. The trabecular phase 

is modelled as an elastic orthotropic continuum. Therefore, the transverse modulus of 

elasticity is assumed to be a fraction of the longitudinal modulus. The mechanical properties 

of trabecular bone were calculated based on bone mineral density obtained from CT images, 

as shown in [3]. It is assumed that the distribution of material mechanical properties is 

uniform within each subvolume. The spinous process, superior articular process, transverse 

process and vertebral endplates are described as linear elastic isotropic material. The physical 

properties of the different components of the vertebral body are summarised in Table 1  

Different properties are attributed to different grades. The basic characteristics of the grades 

are given in Table 2. 

Table 1: Vertebra’s material properties of the components. 

System  Young modulus [MPa] Poisson ratio 

Cortical bone [9], [17], [30] Ecor = 8000 νcor = 0.3 

Cancellous bone (healthy / osteoporotic) [3] Ecan,xx = 130 / 13 νcan,xy = 0.3 

Ecan,yy = 130 / 13 νcan,yz = 0.2 

Ecan,zz = 723 / 72.3 νcan,xz = 0.2 

Gcan,xy = 27.8 / 5  

Gcan,yz = 48.2 / 8.7  

Gcan,xz = 48.2 / 8.7  

Vertebral bony endplate [16], [28] Epl = 25 νpl = 0.4 

Posterior Bone [11], [16], [37] Epb = 3500 νpb = 0.25 

 

 

 

 

Table 2: Characterization of age-related degeneration. 

Grades of age-related 

degeneration 

grade 1 

(healthy) 

grade 2 

(osteoporotic) 

grade 3 

(osteoporotic) 

grade 4 

(osteoporotic) 

Cancellous bone (density 

[kg/m3]) [3] 

300 100 100 100 

Thickness of Cortical bone 

(tcor) [mm] 

0.5 0.4 0.2 0.2 



 

 

Connection type between to 

phase 

bonded bonded bonded unbonded 

 

2.4. Mathematical model 

In this study, the mechanical state properties of lumbar vertebrae in osteoporotic bone tissue 

degeneration were analysed through finite element method structural analysis. The study 

explores the advantages of finite element analysis by developing a universal finite element 

model that can solve various mechanical problems using the same geometry. The unified 

model integrates the outer shell and the inner 3D solid, respecting the different constraints 

between them. 

The stability problem is formulated as a geometrically nonlinear analysis problem. For a 

discrete structure, the problem is described by a system of nonlinear algebraic equations, as 

shown in equation: 

( )( ) ( ) ( )G t t t=K u u F ,     (1) 

where u is the displacement vector describing the state of the structure; F – external load 

vector; KG – stiffness matrix of the deformed structure; time t is a dimensionless quantity 

whose values vary between 0 and 1. This quantity is the deformation of the structure (load 

variation) indicator describing the course of the process.  

When studying stability, a typical case of loss of stability can be distinguished. The most 

characteristic loss of stability is associated with the bifurcation point. The critical condition is 

characterized by the value of the critical force (bifurcation point) and the possible post-critical 

operation of the system with a lower critical force. 

In this work, the structural stability indicators are related to the determination of these 

bifurcation points and the critical values of the forces and displacements occurring at these 

points. 

Since the solution to the problem includes not only displacements but also stresses, the 

mathematical model (1) allows evaluating the strength criteria as well. To determine the stress 

and bone strength, the classic plasticity criterion at a continuous level is often applied. 

Therefore, the von Mises stress criterion is the most frequently used criterion [32] for the 

trabecular bone of the vertebrae. 

The external axial load at time t is given as the vertical displacement uz(tmax) = uz,max limited 

by maximal value uz,max = 1 mm, and the torque as the angle of rotation ωz(tmax) = ωz,max 

limited by maximal value ωz,max = 10о. 



 

 

 

Figure 1: A view of the model: (a) L1 vertebra’s cross-section FE model. (b), (d) The 

schematisations of the degenerative bone structure. (c) Bonded connection. (e) Unbonded 

connection with a gap. 

To handle inequality constraints when solving contact problems, an extended Lagrangian 

approach is used. The displacements are specified to find the bifurcation point and trace the 

descending branch of the load during buckling of the load.  

This reflects the two failure cases: loss of the load-bearing capacity defined by strength 

(plastic yielding) criteria and loss of stability (buckling) defined by deformation criteria. 

Buckling is traditionally considered as buckling of the cortical shell characterised by elastic 

instability due to the critical out-of-plane deformation of a structure reached under the action 

of an axial (in-plane) load. A critical state is characterised by the value of a critical load at a 

(bifurcation) point. In the presence of continuum regions, the critical instability may be 

characterised as the asymptotic limit state having unlimited deformation of the continuum 

part. For evaluation of the strength limit, the additional model for perfect plasticity is 

optionally switched. 

The vertebral body of the anatomic shape shown in Figure 1a is considered as the solution 

domain described by finite elements. Shell and volumetric domains may be connected in a 

different manner. The discretization is performed by applying the pre-processor of the 



 

 

ANSYS code [22]. Four different finite element models were created to describe the grade 1, 

grade 2, grade 3, and grade 4 samples mentioned above for modelling purposes.  

The mesh convergence of one of the four FE models was tested. Three different mesh 

resolutions were created for this model. Mesh 1 uses minimum element sizes that correspond 

to the thickness of the cortical bone. Consequently, Mesh 1 had the largest number of 

elements and nodes among the three mesh resolutions. In the next mesh the size of the 

elements was doubled, in the last mesh – three times. The number of elements and nodes for 

each mesh resolution is shown in Table 3. 

Table 3. Number of elements and nodes of different resolutions of the FE mesh. 

System  Element number Node number 

Mesh 1 758 949 1 853 700 

Mesh 2 147 210 335 656 

Mesh 3 107 747 207 035 

In this study, three mesh resolutions were tested at the same axial rotation. A mesh is 

considered convergent if the results obtained using two successive mesh resolutions differ by 

no more than 5% [1], [16]. The percentage differences in strain and von Mises stress between 

Mesh 1 and Mesh 2 and Mesh 1 and Mesh 3 are shown in Figure 2. The differences in von 

Mises stresses and strains between mesh 1 and mesh 2 were less than 5% in all fabrics of the 

model. Therefore, mesh 2 is considered to be convergent in stress and strain (Fig. 2). When 

studying the models, a mesh with element’s side length of 1 mm was used. 

Cortical bone was discretized from finite element shells. The BE grid contains 2976 shell 

elements with 3094 nodes. Each shell element has four nodes with six degrees of freedom at 

each node: linear displacements in the x, y and z directions and angular displacements about 

the x, y and z axes. Elements can be connected through nodes using both midline and outer 

nodes. These shell elements associated with larger deformation and bending are able to 

describe the instability of the structure. 

 



 

 

Figure 2: Percentage differences in von Mises stresses and strains in different tissues between 

Mesh 1 and Mesh 2 and between Mesh 1 and Mesh 3 in the axial rotation. 

The trabecular bone, posterior bone, and endplate models of the vertebra were discretized 

from volumetric finite elements The model contains 144 234 volumetric elements with 332 

562 nodes. The BE mesh model is shown in Figure 1a. 

The trabecular bone, posterior bone and endplate models were discretized automatically from 

volumetric finite elements SOLID186. This type of solid is a 20 node higher order 3D solid 

that approximates a quadratic displacement. Elements may be in cube, prism and pyramid 

shapes. The element supports large strain, large deflection and plasticity. 

 

3. Results 

To evaluate the contribution of osteoporotic degradation, a series of numerical experiments 

using the above-discussed finite element model equation (1) were conducted.  

For the analysis of the obtained results, point A of the cortical bone was selected, the position 

of which was closer to the expected zone of loss of local stability (Fig. 3, Fig. 4). 

Essentially, the characterization of osteoporotic degradation is an illustration of displacements 

and stresses achieved under loading. The physical nature of different models is qualitatively 

illustrated by deformed shapes, and a colour plot of the displacement magnitude of the 

cortical shell is shown in Figure 3. The displacement values, defined in millimetres, are 

illustrated in a unified colour scale. The first three subfigures (a, b, c) illustrate bonded shell-

solid contact, while the last subfigure (d) illustrates unbonded contact. The first column (a) 

shows the results obtained for a healthy vertebra with a large shell thickness of 0.5 mm. The 

second column (b) shows the results obtained for an osteoporotic vertebra with a decrease in 

the thickness of the shell to 0.4 mm, while the third and fourth columns (c, d) show results for 

the most degraded cortical shell. Characterising deformation shapes in a colour scale clearly 

illustrates the degree of degradation. Unbonded contact leads to the occurrence of two higher-

order deformation modes. Near point B, an extremely large displacement can be observed 

(Fig. 3 d). An extremely large displacement occurs, exceeding 8 times the thickness of the 

cortical bone (Fig. 3d). This result indicates shell buckling. 



 

 

 

Figure 3: Effect of the deformed shape at the first bifurcation point. (a) Bonded trabecular 

bone, tcor,1 = 0.5 mm, 𝑡̅cr,a = 0.30. (b) Bonded trabecular bone, tcor,2 = 0.4 mm, 𝑡̅cr,b = 0.64. (c) 

Bonded trabecular bone, tcor,3 = 0.2 mm, 𝑡̅cr,c = 0.74. (d) Unbonded trabecular bone, 

tcor,3 = 0.2 mm, 𝑡̅cr,d = 0.16.  

The stress field characteristics are shown in Figure 4. The distribution of von Mises stress on 

the cortical shell is presented analogously to the previous picture. It is clearly seen that 

bonded and unbonded cortical walls exhibit completely different resistance. 

 

Figure 4: The von Mises stress σ (MPa) distribution on the cortical bone at the first 

bifurcation point. (a) Bonded trabecular bone, tcor,1 = 0.5 mm, 𝑡̅cr,a = 0.30. (b) Bonded 

trabecular bone, tcor,2 = 0.4 mm, 𝑡̅cr,b = 0.64. (c) Bonded trabecular bone, tcor,3 = 0.2 mm, 

𝑡̅cr,c = 0.74. (d) Unbonded trabecular bone, tcor,3 = 0.2 mm, 𝑡̅cr,d = 0.16. 

The bonded case (Fig. 4 a, b, c) shows high volumes of stress, indicating higher resistance, 

while the unbonded case (Fig. 4 d) is characterised by substantially lower stress values, 

indicating high deformations due to small loads. 

 

 

4.Discussion 

The discussion on the failure mechanism is based on the obtained results and aims to discover 

the role of buckling in the load-bearing capacity of the L1 vertebral body. Here, the lower 



 

 

bound of the safety margin is identified as a parameter that reflects fracture risk, which 

includes not only the classical compressive strength criterion but also the deformation 

criterion that reflects large deformations leading to local instabilities. 

The essential properties of the compressed body are characterised by the force-displacement 

relationship. The numerical results are shown in Figure 5.  

 

Fig. 5. Comparison of maximum compression load versus age-related degeneration at time 

tmax. 

Here, the change in compressive load is presented as a function of the degree of vertebral 

degeneration at uz,max and ωz,max. 

When the mass of the trabecular bone and the thickness of the cortex decrease, the value of 

the compressive load decreases significantly. As the cortical layer decreases from 0.5 mm 

(Grade 1) to 0.4 mm of the osteoporotic vertebra (Grade 2), the maximum axial force 

decreases almost two and a half times, from F1 (tmax) = 21.3 kN to F2 (tmax) = 8.6 kN. 

A further reduction in the cortical bone thickness of the osteoporotic vertebra to 0.2 mm 

(Grade 3) slightly affects the axial force compared to Grade 2, and its value is 

F3 (tmax) = 7.3 kN. However, if the osteoporotic vertebra has gaps between the cortex and the 

trabecular bone (Grade 4), the axial force is reduced six-fold to F4 (tmax) = 1.21 kN compared 

to the same osteoporotic vertebra without a trabecular bone defect (Grade 3). 

The variation of von Mises stress at a selected point A is shown in Figure 6. Here, the 

variation of von Mises stress is plotted against relative time 𝑡̅ = t / tmax. The relative time 

ranges between the 0 and 1 interval (0 < 𝑡̅ < 1) and illustrates the behaviour of the structure 

during the loading state. The time scale also reflects displacement (0 < u(t) ≤ uz,max (tmax)). The 

location of point A is chosen in advance to illustrate the typical situation of cortical shell 



 

 

behaviour. To understand the safety margin, a von Mises stress contour plot is shown in 

Figure 4 in the frontal view of the cortical bone. 

The first three curves, denoted as Curve a, Curve b, Curve c, illustrate the variation of 

specified quantities corresponding to three values of cortex thickness tcor,1 = 0.5 mm, 

tcor,2 = 0.4 mm, tcor,3 = 0.2 mm, in the case of perfect bonding. The fourth curve, Curve d, 

illustrates the time variation of these quantities for the case of degenerated bond considering 

displacement at the cortex thickness of tcor,3 = 0.2 mm (Fig. 5). The presence of critical loads 

Fcr,a, Fcr,b, Fcr,c, Fcr,d  was confirmed by considering the variation of horizontal displacement 

ux(t) at point A (Fig. 6). It was found that the obtained critical loads illustrate different 

behaviour in the presence of a perfect bond. The first bifurcation point is denoted by thin lines 

indicating critical displacement on a horizontal axis and critical load on a vertical axis. 

Both unbonded and bonded structures illustrate different post-buckling behaviour. For the 

bonded case, bifurcation points stand for total stability load with unstable post-buckling 

behaviour. For the unbonded case, bifurcation points indicate local instability and secondary 

stable equilibrium. 

The variation between force and displacement in the horizontal direction ux(t) at point A 

explains post-buckling behaviour after bifurcation. Descending of horizontal displacement 

(Fig. 6) indicates unstable motion after buckling. Global post-buckling instability defined by 

an unlimited drop of displacement corresponds to the case of a bonded shell-solid connection 

(Curves a, b, c). For the case of osteoporotic bonding, the secondary stability past is indicated. 

It is characterised by secondary branches of ascending loading (Curve d) (Fig. 6). 

Based on the numerical results (Curve a) obtained for healthy vertebrae with a shell thickness 

of 0.5 mm (Grade 1), it was found that the load-bearing capacity of vertebrae is characterised 

by the strength criterion. The time histories of the von Mises stress σ (Fig. 7) show that the 

strength criterion σy ≈ 64 MPa for the case under compression with torsion is satisfied at time 

instant 𝑡̅cr,a = 0.30. Moreover, the local displacement ux,a (𝑡̅cr,a) = 0.08 mm (Fig. 6) is 

relatively small, while the load at time instant 𝑡̅cr,a may be considered as the limit load 

Fcr,a = 12.7 kN. The distribution of von Mises stress (Fig. 4) confirms this statement clearly. 

The behaviour of osteoporotic bonded vertebrae with a shell thickness between 0.4 mm and 

0.2 mm under compression with torsion (Curves b, c) can be characterised in the same way.  

The time histories of the von Mises stress σ (Fig. 7) show that the strength criterion 

σy ≈ 64 MPa for Grade 2 is reached at time instant 𝑡̅cr,b = 0.64. However, the local 

displacement ux,b (𝑡̅cr,b) = 0.21 mm (Fig. 6) is considerably higher, and the lower limit of the 



 

 

load limit has been halved to Fcr,b = 6.39 kN. The distribution of von Mises stress is shown in 

Figure 4. 

When reducing the shell thickness to 0.2 mm (Grade 3), the time histories of the von Mises 

stress σ (Fig. 7) show that the strength criterion σy ≈ 64 MPa is satisfied at time instant 

𝑡̅cr,c = 0.74. However, the local displacement ux,c (𝑡̅cr,c) = 0.32 mm (Fig. 6) is insignificantly 

smaller, and the load at time instant 𝑡̅cr,c may be considered as the limit load Fcr,c = 6.12 kN. 

The distribution of von Mises stress (Fig. 4) clearly confirms this statement. 

 
 

Figure 6: Graph of the horizontal 

displacement ux(t) at point A as a 

dependency of the load. 

Figure 7: Graph of the von Mises stress 

change at point A in time. 

According to statistical data, it is safe to assume that a decrease in trabecular bone density 

most often occurs near the front vertebral wall, which causes a gap to form between the 

trabecular and cortical bones. With the appearance of a gap between cortical and trabecular 

bones, the behaviour of the vertebral body defined by Curve d is different. The variation of 

displacement (Fig. 6) clearly shows the presence of a critical point at time instant 𝑡̅cr,d = 0.16 

(Grade 4). Consequently, load-bearing capacity is predefined by the critical buckling load 



 

 

Fcr,d = 0.80 kN (Fig. 6). This load is characterised by the elastic state, σ (𝑡̅cr,d) = 30 MPa < 64 

MPa (Fig. 7).  

Even lower values may be required to limit transverse displacement. With degeneration of the 

trabecular bone, cortical bone thickness does not have as significant an impact on the 

vertebra’s load capacity as the formation of voids near the cortical bone. When the shell 

thickness was reduced to 0.2 mm (Grade 4), a displacement ux,d (𝑡̅cr,d) = 0.31 mm, which was 

150% larger than the shell thickness, appeared. Therefore, when compressing a degenerated 

vertebra, the time history of the transverse displacement at point A (Fig. 6) exhibits an 

unlimited character, illustrating unstable deformation behaviour. 

Mentioned results fall within the range of 1000–6000 N, established by Lohmüller et al. [20], 

who measured the compressive failure load in osteoporotic elderly patients, with an average 

age of 82 years, as well as with numerical results obtained by McDonald et al. [25] during the 

modelling and computer FE analysis of osteoporotic vertebrae. 

The performed numerical stability analyses of lumbar vertebrae have revealed that the 

presence of local degradation between cortical and trabecular bones may lead to catastrophic 

consequences in the mechanical behaviour of lumbar vertebrae. The disappearance of a bond 

leads to local instability in the form of buckling. 

The failure mechanism shown in Figures 6 and 7 was determined for specific bone density 

values that are assumed to be homogeneous within each subvolume. For wider range of 

results, it would be of great interest to observe how the failure mechanism changes at different 

density values. Histomorphometric data used to calculate density may only be available for 

patients with osteoporosis who have undergone vertebroplasty [7]. The availability of 

histomorphometric data for other patients is very limited [7]. An alternative approach that 

could be taken in this case is to use CT data for density estimation. This approach was 

followed, for example, by Petrushak et al. [31] in analysing the mechanism of human femur 

fractures. The computational model presented in this study analysis was used for the failure 

mechanism only under static conditions. In further studies for the reliability of the results, 

fatigue analysis would be desirable [34]. 

Gerontologists determine the degree of osteoporotic degeneration based on the density loss of 

the trabecular bone. The criterion for the risk of vertebral fractures is a decrease in the height 

of the osteoporotic vertebra. The results of the numerical modelling revealed the instability of 

the deformity resulting from osteoporotic bone degeneration. In addition to the vertical 

decrease of the vertebra dimensions, another important criterion is the decrease of the 

horizontal dimensions. 



 

 

It is important to note that local deformation criteria, including buckling, should be used to 

determine fracture risk. Changes in cortical bone thickness and areas of major disruption 

between cortical and trabecular bone must be evaluated, not just mean trabecular bone 

density. 

The presented results cannot yet be directly applied in medical practice, since the created 

models describe segregate, essentially hypothetical cases of bone tissue pathology. Any study 

involving computer modelling is not without various degrees of limitations. Our presented 

work is no exception. Firstly, the model used in this study was reconstructed based on the 

lumbar spine of a healthy patient. Secondly, the study is limited to a single sample. Thirdly, 

the loading conditions used in the current study do not fully reflect the real physiological 

situation. Fourthly, the current problem may be associated with many research areas, such as 

cell biology, molecular biology, immunohistochemistry and biomechanics. In this study, we 

analysed the impact of osteoporosis on loss of load-bearing capacity solely from the 

perspective of biomechanics. Therefore, additional research is needed in the future. 

 

Data Availability 

The data presented in this study are available on request from the corresponding author. 
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