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In this application, 3D electromagnetic sensors have been integrated into a data-glove to accurately
model and capture the motion of the human hand. By modelling the movement of the human hand, this
system has been shown to accurately measure the rest tremor evident in subjects with Parkinson’s disease.
It was found that 11 sensors were sufficient to model the human hand, including all the phalanges.
A capture rate of 10 measurements per 1 s was achieved. A discrete Fourier analysis has been applied to
extract the tremor frequency from the sensor data time series. Further an analysis of the instantaneous
speed of hand motion has been used to extract clinically significant diagnosis. The technique described is
seen to provide an objective and quantitative method for the analysis of clinic conditions such as Parkin-
son’s disease (PD) and essential tremor (ET) as a way to assess the effect of therapeutic interventions.
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1. Introduction

Attempts to quantify signs of Parkinsonism date back to the 1920’s. Accurate and
quantitative assessment of tremor and bradykinesia (slow speed of movement, char-
acteristic of Parkinson’s disease) may, however, improve diagnostic specificity and
provide un-biased quantification of therapeutic interventions. Methods to assess
tremor and bradykinesia may be subdivided into objective quantification techniques
and subjective assessments. The latter are commonly used in clinical practice and
include patient functional disability scales, patient-completed diaries and subjective
physician ratings of severity of signs of disease.

Many objective techniques sample only limited aspects of motor dysfunction. The re-
lationship between pathophysiology, impairment and disability is complex; a problem in
one domain does not necessarily predict difficulty in another. Existing physiological tech-
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niques to record tremor include accelerometry, electromyography (short- or long-term),
computer tracking tasks, graphic digitizing tablets and infrared sensor system [1]. Each of
these techniques has their drawbacks and several are time-consuming to perform. Objec-
tive tests for bradykinesia are even less satisfactory, and include the Purdue pegboard, and
tapping tests between two counters a fixed distance apart. Moreover, the pegboard lacks
both specificity and sensitivity. It also suffers from a significant “floor” effect.

In this paper, we apply a novel three-dimensional motion system, developed using
a 3D imaging system and the electromagnetic position sensors (hand movement rec-
ognition), for use in the recording of upper limb tremors and bradykinesia. The quan-
titative assessment of frequency in Parkinson’s disease was first proposed using
a posture dataglove in a number of medical abstract publications by D. J. WARNER et
al., but no actual measurement were demonstrated [2], [3].

The 3D medical imaging system [4], [5] used has first been introduced in 1993 to
visualize online the position of endoscopes in the human colon, later on, another
software system (the “RMR” system) [6] was developed to produce a more realistic
endoscope using stored data from the original system.

The objective of this application is to characterize the clinical signs of patients ex-
hibiting clinically probable PD (according to the UK Parkinson’s Disease Brain Bank
Criteria [7]) and patients with definite essential tremor (according to the TRIG criteria
[8]) during the studies.

Ethical approval for this work was obtained from Newcastle and North Tyneside
Local Research Ethical Committee.

In this application, the 3D imaging system has been used together with a “data-
glove”, worn on the dominant hand of the patient. Sensor data provide detailed re-
cording on all the hand phalanges. In Parkinson’s disease, the involuntary hand tremor
frequency is as fast as 4-5 Hz, decrement Fourier transform is used to analyze this
tremor frequency and instantaneous speed is also measured by calculating derivative
in raw data-time profile for each experiment.

Fig. 1. The 3D imaging system
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The 3D imaging data-glove developed for this medical application is comfortable,
light-weighted and do not restrict movement nor affect the motion of the hand during
experimentation. Electromagnetic sensors provide a powerful technology for human—
computer interaction (HCI) and have been applied to many fields [9]. One particular ad-
vantage is that the user may harness the technology easily and routinely by using ready-
to-wear articles of clothing, e.g. headsets or data-gloves. Secondly the 3D sensors may
simply be plugged into a computer system, allowing the user uninhibited control and
interaction with the computer system using the glove arrangement (ref. figure 1).

The sensor measurements have been found to be repeatable and accurate. In this
section, the assessment of these parameters of measurement quality are presented.
Stability is observed by placing the data-glove at a static position in the magnetic field
and analyzing the resulting data captured for both position X, Y, Z and orientation, &
and ¢, for one of the sensors. Figure 2 shows the variability measured for this static
test in terms of a standard deviation from the average value in meter. Repeating this
experiment and choosing different sensors, the repeatability is obtained (ref. figure
3). By calculating the relative vibration percentage, the conclusion could be made that
the accuracy of the system is higher than other system.

To allow multiple users to access the sensor data simultaneously, a data transmis-
sion program has been implemented within this application to transfer the sensor data
to different client machine via network, and then the live hand motion can be simu-
lated on line on these client machines.

Average Standard Deviation of 147 frames is:
X: -2.7707583026337E-7

Y. 9.94414862507267E-9

Z: -7.21701178468776E-7

Theta: 9.36560235385334E-7

Phi: 2.463628434421393E-7

Fig. 2. Stability study

accuracy of the position and orientation measurement of the sensor is:
|Actual Travelling Distance: 0.0705

1System Measured TravelingDistance: 0.0697437935685407

Actual Rotating Angle: 0.6981

System Measured Rotating Angle: 0.68344469237852

Fig. 3. Repeatability study

Section II describes the principle of the electromagnetic 3D measurement. Section
IIl defines the mathematical model used to construct the on-line graphical hand
model. Section IV introduces the algorithm to obtain the frequency of different
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movements using the discrete Fourier transform (DFT) and the method to obtain the
instantaneous speed of hand movements which is one of the assessments required in
the treatment of Parkinson’s disease (PD). Section V demonstrates four experiments
undertaken to test the capability of the method proposed for (a) the detection of
tremor, (b) the rigidity of the wrist during roll motions, (c) the dexterity testing of
finger pinching, and (d) hand grip motion using two subjects:

(i) one exhibiting Parkinson’s symptoms,

(ii) the other not exhibiting Parkinson’s symptoms.

Figure 4 shows a mechanical robot RT100, which is also used in the experiment,
the robot is programmed to generate consistent and repeatable motion. It may be
therefore used as a reference for the same experiments with human subjects.

Fig. 4. RT100 robot used to simulate human movement

The results take the form of (1) time-traces for sensors attached to key parts of the

hand, (2) a frequency analysis of these time traces, (3) a speed analysis for these time-
traces.

2. Principle of 3D electro-magnetic measurement

In order to measure the 3D position and orientation of a sensor, an alternating cur-
rent (AC) magnetic field must be applied. Each sensor coil then provides an induced
voltage that is proportional to the magnetic field strength. For computing the full 3D
position and orientation specification of the sensor coil it is necessary to make several
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simultaneous measurements. This has required nine generator magnetic sources to be
used, which are arranged in three orthogonal sets placed on a horizontal plane. The
system is based on low strength magnetic field capable of capturing the absolute po-
sition of the magnetic sensor mounted on the data-glove and avoiding the difficulties
of calibration of conventional bending sensors. The technique is considered medically
safe for use with patients undergoing medical treatment and unlike acoustic and mi-
crowave fields, the generators do not need to be in contact with the body or require
matching media making the system convenient to use [5].

Dipole

SR... |

’
(5

(b)

Fig. 5. (a) Diagram for the dipole field equation, (b) 3D sensor in magnetic field

The magnetic field B at a point P, produced by a dipole at the origin (ref. figure 5a),
is given by:
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B=]1‘;—(;[2&R cosa +a,sinal, €))

where:
B is the magnetic flux density (Tesla),
R is the distance from the dipole to the point P (metres),

a is the angle from the coil axis to the point P (radians),
2

kg is a constant equal to-ﬂO—NIb——- , where, u, =4nl10 =7 N is the number of
T

turns,
I is the current inside the coil (ampers),
b is the side of the coil (metres),
ay is the unit vector in direction of R,
a, is the unit vector in direction of a.
Deriving the Cartesian form gives:

B, =k—i(2cosa), 2)
R
B, =%(sin a), 3)

where:

R=\/)c2+y2+z2 ) “)
R, =,/x2 +y?, ®)

cosa =%, (6)
sina =——1—;¥—, @)
cos = R); . (8)
sin ﬁ:Rny. ©)

Resolving the fields By and B, produces the following field components:
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By =By +B,
= Bgsina + B, cosa

=% [2cos arsina + sina cosa |
R

k .
= —GB[Bcosa sma]

kg |, 2R,
= Rg [3 R;], (10)
kG
B, =B, cosﬂ=F(3xz), n
B, =B, si —kG(3 ) 12
y - xysxnﬂ“}'e? Yz), ( )

B, =Bjcosa — B, sina

=-%’;—[2 cos’a — sin Za]

k6 [h.2 2 2
= (13)
Combining the field components gives:
B=B,-a,+B,-a,+B,-a,
k » n X 14
=R—G5[3z(axx+ayy)+ az(2z2 S —xz)]. (14

Thus for each generator coil with co-ordinates at (Xg;, Ys, Zg: = 0), the magnetic
field strength at the measurement sensor is:

B, =2—2[3z(ax(x S Xg)+a,(r-Ye))+a, @2 - (y-Y)? - (x= X2 ), (15)

where i is the index reference number for the generator coil. The e.m.f induced in the
sensor coil when placed in a magnetic field (ref. figure 5b) is proportional to the re-
solved component of the field along its axis:

Vs =ks(B-ay), (16)

where:

Vs is the e.m.f induced in the sensor (volts),

ks is a coefficient defining the sensitivity of the sensor (volts/tesla),

ay is the unit vector in direction of the sensor, defined by the two Euler angles 8
and ¢ (ref. figure 3).

Expressing the e.m.f induced in the sensor coil related to each generator coil (and
their magnetic field), the following equation can be obtained [8]:
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Vo= kZI:S {[32(&xx+ &yy)+ a, (222 - y? -—xz)]-fls }, 17

where:

ag =(sin9'&xy+cos9&2), (18)

then I}S,. can be expressed as
Vo= %{32[& ~ X, )cos¢ +(y—Y,,) sin ¢]sin9

+[2z2 ~(y-1,) —(x—XG,.)z]cosé’}. 19)

The imaging system consists of three sets generator coils, each set includes three
inductive coils, each coil generates a different time varying magnetic field. In total, 9
measurements of the induced voltage of a single sensor are available, therefore, the
Cartesian position parameters (x, y, z) and orientation parameters & and f are ob-
tained. The algorithm used to update the real time sensor position and orientation
parameters consists of a sebuence of calculation stages which converts the resolved
induced voltage into the final posture measurement. Each stage uses a calibration file
to convert the signal into SI units of distance and angle.

Channel Success X T Z Theta Phi

0 0124 0053 0.292 1.451 2326
1 -0.097 0128 0.301 1.621 2072
2 -0.054 0.087 0.311 1.718 2311
3 -0.003 0.060 0277 1.279 -2.886
4 Field out of range 0.061 0.405 0.311 2.474 2.284
5 0.013 0.083 0.310 1.599 -2.464
6 -0.018 -0.015 0273 1.580 2735
7 0.014 0012 0.291 1.468 -2.822
8 -0.013 0072 0233 1.636 -2938
9 0.007 0032 0.327 1.448 -2.768
10 0104 0010 0.302 1.227 -0.932

Fig. 6. On-line position and orientation measurement for the 3D sensors

Stage 1. Convert raw ADC data to volts.

Stage 2. Convert volts to “sensor volts per amp of drive current”.

Stage 3. Apply calibration for the generator coils.

Stage 4. Apply calibration for sensor.

Stage 5. Convert result to signed magnitude.

Figure 6 displays a table of position and orientation readings for up to 16 sensors.

3. The mathematical model

In order to measure the position and orientation of the hand in 3D space, it is necessary
to attach a set of sensors at strategic positions on a glove. Figure 5 shows the location of
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eleven miniature inductive sensors sown into a glove. These sensors are mounted on each
fingertip and the phalange above the base joint. One further sensor is put on the palm.
For further operation, we need to label the hand digits from 0 to 4, where 0 is the

thumb, and 4 is the little finger. Finger joints are numbered from 0 to 3, where 0 is the
base, and 3 is the fingertip (ref. figure 7).

SEnsors

Fig. 7. Sensor positions in the data-glove

3.1. Joint positioning

First, the direction unit vector, converted from the orientation of S10 (ref. figure 7),
needs to be scaled by different factors, which is determined by the width of the wrist.

Adding or subtracting the position vectors to S10, the position of P1, P2, P3, P4 could
be worked out (ref. figures 7, 8).

Sensor S10 |

P4 P3 i P
_ Wiwin | Wl | g )
W4wi5} EW]W;

Fig. 8. The definition of wrist vectors
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A

o =V + I}directionSIO W1 it (20)
Apz = I}510 + I}directionSIO W2 et > (21)
I}P3 = I}510 - I}directionSIO'W 3 st s (22)
I}P4 = I}510 - I}directionSIO‘W4wirst > (23)

where:

I}sm is the position of sensor S10 (ref. figure 7),

I}dimﬁon s10 18 the unit direction vector of sensor S10,

W1iig>» W2 W3,iq and W4 are the distances from S10 to P1, P2, P3
and P4.

wrist ? wrist

Joint 3 s
¢ ¥V divectiondI41)

Sensar S[I+1]
Joint 2

Llggs

Joint 1

7 Vdimﬁusm
Sensar (1]

Joint 0
Fig. 9. Measurement of finger positions

The sensors, described above ‘on each fingertip’ and ‘on the phalange above the
finger base’, are put along and in the middle of that phalange. Then positions of joints
0, 1, 2, 3 of all fingers 0, 1, 2, 3, 4 (ref. figures 7, 9) are determined by scaling the
direction unit vector of the relevant sensor with the factor determined by the length of
the phalange.

A x A L2
Vjoint0 = Vsu] - VdirectionS[I] (TI) > (24)
A - L2
Visimy = Vsu] + VdirectionS[l] (TJJ > (25)

A A A Ll
Vioinz = Vsu+11 - VdirectionS[I+l] ('2—1') > (26)
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A A n Ll
Vsoins = Vsprany + Virectionsir+1] (TI)’ 27

where:
I}S[ ;) and I}S[ 141y are the position of sensors S[/] and S[/ + 1],

Vdm"-onS[ 1 and I}dimﬁoﬂS[ 141 Are the unit direction vectors of sensors S[/] and S[/+ 1],

L2, and L1, are the lengths of the relevant finger phalanges (ref. figure 9).

The joint 0 of fingers 1, 2, 3, 4 and P4, P3, P2, P1 will then be connected to form
the basic quadrilateral prisms to draw the palm (figure 7).

3.2. Calculation of the vertices for each face (8)

The shape of a human finger is cylindrical. To render a realistic image, the cylin-
drical shape is approximated as a series of octagonal prisms following the bending of
a human finger. It is very easy to determine a plane in which the joints 1 and 2 should
lay by knowing their up-vectors, which could be actually calculated by adding the
direction vectors of the two finger bones linked by the proportional joint. Figure 10
shows the octagons constructed around the finger joints. Each of the eight vertices of
neighbouring octagons may be joined to form a series of connected quadrilateral prisms
around the finger bone.

Joint 3

VI3]0
Joint 2
V2101l

Face to Joint 1

draw

Vi Joint 0

Vol

Fig. 10. The octagon shape used
to represent the human finger phalanges

3.3. Calculation of facet and surface normals

After creating all the vertices, a series of four-side faces (ref. figure 10) are used to
represent the finger surface. For drawing the object in open-GL, the up-vector to each
of these faces is calculated (ref. figure 11).
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A

Ve
Vit
—>7,
Vi
Vit

Fig. 11. Up-vector for each polygon face

V2 =V ~ Vi (28)
"o =Vin —Viar» (29)
Vip =V1 V25 (30)

where:

A~

Vinuns Vi Viausz» Vs are four vertices of a face,

17“,, is the up-vertex of this face.

Fig. 12. Surface normals of each of the prism vertices

In order to make the image appear smooth, surface normals should be calculated
for each of the prism vertices by adding the facet normals of the four faces by which
the vertex is shared and then re-normalized (ref. figure 12) [6].
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3.4. Drawing the object

The hand model is written in Delphi Pascal using the open-GL graphics library for 3D-
image rendering. It relies on the windowing system for window management, event han-
dling, colour map operations, etc. [10]. The image produced has to be redrawn regularly to
give the impression of animation at the display refresh rate of 50 frames per second. Figure
13 shows the images captured from instances of a series real-time hand movement. Whilst
the graphic model is displayed, the sensor data to produce each hand frame may be saved
to a file for further clinical analysis. Off-line, signal processing algorithms are used to
extract motion parameters such as dominant frequency and variation in speed of the
hand motion.

Fig. 13. A sample of the 3D hand model

4. Fast Fourier transform analysis of the recorded data
and speed analysis for slowness test

The discrete fast Fourier transform algorithm has been widely used in motion
analysis, for example:

e In analysis of digital audio recordings to determine the frequency of a note
played in recorded music, to try to recognize different kinds of birds or insects, etc.

e In image motion processing.

e In statistical prediction applications, periodic fluctuations in stock prices, pre-
diction of animal populations.

e In analysis of seismographic data to take “sonograms” of activity inside the Earth.

In this application, the discrete fast Fourier transform algorithm (DFT) has been
used to synthesize dominant frequencies in individual sensor data time series. This
allows important clinical measures to be defined objectively and with precision. This
is seen to offer scientific rigour to what is currently a qualitative assessment of Park-
inson’s symptoms carried out by medical professionals. The main diagnoses and as-
sessments of Parkinson’s disease are bradykinesia, impaired gait and mobility, pos-
tural instability, resting tremor and limb rigidity.
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The Fourier transform is based on the discovery that it is possible to take any peri-
odic function of time x(¢) and resolve it into an equivalent infinite summation of sine
waves and cosine waves with frequencies that start at 0 and increase in integer multi-
ples of a base frequency f; = 1/T, where T is the period of x(¢).

x()=ay + Y [a, cos(2m kfyt) + by sin(2m kfyt)). (31)
k=1

An expression of the form of the right-hand side of this equation is called a Fou-
rier series. The Fourier transform computes the a, and b, values to produce the Fourier
series, given the base frequency and the function x(¢). The a, term outside the sum-
mation can be considered as the cosine coefficient for £ = 0. There is no correspond-
ing zero-frequency sine coefficient by because the sine of zero is zero, and therefore
such a coefficient would have no effect.

To compute the fast Fourier transform, a finite set of sines and cosines has to be
defined. This is easy to do for a digitally sampled input, when we stipulate that there
will be the same number of frequency output samples as there are time input samples.
In this application, we can pretend that the function x(¢) is periodic, and that the pe-
riod is the same as the length of the recording. The duration of the repeated section
defines the base frequency f in the equations above. In other words, f; = sampling
rate/N, where N is the number of samples in the recording.

The DFT is an algorithm that converts a sampled complex-valued function of time
into a sampled complex-valued function of frequency [11]. A rigorous mathematical
understanding of the DFT can be expressed in the following equation that tells you
the exact relationship between the inputs and outputs:

n-1
Y, =Zxk {cos[mk—p} 5 isin[.’lnﬁp—}} , (32)

%=0 n n

where:
Xy is the kth complex-valued input (time-domain) sample,
¥, is the pth complex-valued output (frequency-domain) sample,

n=2" is the total number of samples,

k and p are in the range [0 ... n—1].

There are several relationships that must be considered using DFT. The major pa-
rameters of interest that will be reviewed here are as follows:

T is increment between time samples (in seconds),

/s 1s sampling rate (in hertz) = 1/7,

F is increment between frequency components (in hertz) = frequency resolution,

1, is record length (in seconds) = effective period of time signal = 1/F,

Jo 1s folding frequency = £/ 2 (in hertz),

Jfnis possible highest frequency in spectrum (in hertz),

N is number of samples in record.
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In order to avoid aliasing, it is necessary that

f22f (33)

this will result in

T<—_ (34)

2fn
For a desired frequency resolution, the minimum record length £, must be selected
according to

1
t,= = (35)
Equations (34) and (35) lead to the conclusion that in order to identify high fre-
quency, it is necessary to reduce 7, for a given N, record length #, would be shorten,
thus the frequency resolution will be decreased. Conversely, to increase the resolu-
tion, it is necessary to increase #,, for a given N, T would be increased, which would
decrease the ability to identify high frequency.
The only way to satisfy both the ability to identify high frequency and the ability
to obtain high-frequency resolution is to increase the number of points & in a record
length. If f, and F are both specified, N must satisfy [12]

2/
Nz=. (36)

The frequency resolution is not a crucial factor for the study of Parkinson’s dis-
ease, but to identify the 4-5 Hz tremor frequency the sampling rate has to achieve
minimum 10 Hz, which is the highest capacity of the current system.

Applying this technology, a graphic interface has been implemented to describe in
a chart the raw data and frequency analysis of various tests on patients with Parkin-
son’s disease.

In corresponding to the practical clinic requirements, a speed analysis program has
also been implemented. With the speed-time profile, the slowness in the hand move-
ment of patient with Parkinson’s disease can be quantitatively measured. The instant
speed is defined as the derivative of the raw data in time profile:

af
= 7 37)
where S represents the instant speed, f is the raw data of the actual movement, and ¢
stands for time.

During experiments, up to 5 Hz bandwidth hand motion for two subjects, a patient
with Parkinson’s disease and a healthy person, and an anthropomorphic 6-axis Robot
manipulator called RT-100 are recorded. Recordings were taken at 10 Hz sample rates
for 60 seconds, and then analyzed by the above described algorithm.
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S. Experiments and clinic analysis

Quantitative measurement technology has been applied in the four experiments of
the assessment for patient with Parkinson’s disease; in these experiments, frequency
and speed are the subjects to be analyzed.

Experiment 1: rest tremor

During this experiment, the above mentioned two subjects, a patient, a healthy
person attempted to maintain body position at rest, for example, hand tremor while
resting on lap and robot RT100 programmed to do pitch movement to simulate the
hand tremor. These hand tremors were recorded and the position vibration of sensor
S5 is calculated and saved into a text file (ref. figure 14) [13], [14].

Fig. 14. Rest hand tremor magnitude calculation

Ml= Il}xoss ‘I}nss| > (38)

M2= |I}1055 “I}:zssl > (39)

where:

M1, M2 are the standard deviations of sensor S5 at different times #1 and 72 (ref.
figure 14),

VA',OSS is the position of sensor S5 at 70,

I},,s5 is the position of sensor S5 at 71,

~

V,,ss is the position of sensor S5 at 72.

The results of frequency and speed analysis are displayed in figures 15-18. This
test showed that the PD subject had a characteristic tremor frequency at 4.5 Hz (ref.
figure 15) which was not apparent in the normal control subject (ref. figure 17). Fig-
ures 16, 18 are the speed analysis results of the rest tremor experiment with PD sub-
ject and normal control.
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D:\suyutOpen GL-1_fromMichalePCl\george 26112001 _txtvesttremer_dft_txt txt, raw data

0.075
0074 {
0.074-
0.073
0
seconds

Frequency Analysis

Fig. 15. Rest tremor frequency test result in PD patient

D:\suyuiOpen GL-1_fromMichalePCi\george_26112001 _txtvesttremer_dft_txt txt, raw data

Time(s)

Fig. 16. Rest tremor speed test result in PD patient
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D:\suyu\Open GL-1_fromMichalePCisuyu_29112001 _txtvestiremor_021201_dft_txt txt, raw data
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0.04- : + ' .- i
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seconds -
i
Frequency Analysis
94 .......... - 5 e et e 0 TR B o
Fig. 17. Rest tremor frequency test result in normal control
H
D:\suyutOpen GL-1_fromMichalePCisuyu_29112001 _txtvesttremor_021201_dft_txtixt, raw data
0.051- uJ] LSRR o
0.048 4 : : . : ) .
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0 5 10 15 20 25 30 35 40 45 50
Hz
Time(s)

Fig. 18. Rest tremor speed test result in normal control

Experiment 2: Rotation

In this experiment, three subjects, a patient, a healthy person rotated their hands
around wrist as much as they can, and robot RT100 programmed to do roll movement
with the “wrist” motor to simulate the hand rotation. These hand movements were
recorded and rotation angle of sensor S10 (ref. figure 19) was calculated and saved in
a text file as the analysis object.
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Rotation_Angle A2
Rotation AncleAl Y

V!O _directiond0

V;l_ direction20
A

I”n _directionS10

Fig. 19. Hand rotation angle calculation

Al = cos" IA/:O _ directionS10 V:] _ directionS10 , (40)
IVIO _ directionS10 | ’ IVII . directionSIOl

AD— st IftO_direclionSlO 'Viz_directionSIO ’ (1)
IVIO_directionSIO| ’ IVIZ_directionSIOI

where:
A1, A2 are the rotation angles from 70 to different time ¢1 and 72,

Vo directionsio 1S the direction vector of sensor S10 at 70,

A

Vit _directions1o 1S the direction vector of sensor S10 at 71,

A

Vs directionsio 1S the direction vector of sensor S10 at £2.

i
¥\suyutOpen GL-1_fromMichalePC\george_26112001_txtvotste_withoutrobot_rotation_txt 1xt, raw daté
S (I O . o 3 i e e v Yo ke gy ST ~TE——

radian

seconds ,
Frequency Analysis ‘
GOF---v-s--as PR [T, b o enene e wessssasaaw 36 e aeesatarate
IR RIS | |11 | PRSI I ICEEEEEEER R Teeesreeaan
W Bcie v vicnnieizn el s Mo cmessmes prodfl Tor o o o s dulondonsremnis
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Fig. 20. Rotation frequency test result in PD patient
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The results of frequency and speed analysis are displayed in figures 20-25. The PD
subject achieved a rotational frequency of 1.5 Hz (ref. figure 20) compared to 0.4 Hz for
the normal control subject (ref. figure 22) and the robot motion of 0.8 Hz (ref. figure
24). Figures 21, 23, 25 show the speed tendency of the rotation movement in PD pa-
tient, normal control, and robot RT100 programmed with a fixed speed. More speed
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variation is observed from PD patient’s movement.

2isuyu\Open GL-1_fromMichalePCl\george 26112001 _txtvotate_withoutrobot_rotation_txt txt, raw deta
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Fig. 21. Rotation speed test result in PD patient
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Fig. 22. Rotation frequency test result in normal control
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D:\suyutOpen GL-1_fromMichalePCisuyu_29112001 _txtvotate_021201_txt txt, raw data
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Fig. 23. Rotation speed test result in normal control
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Fig. 24. Fixed speed rotation frequency test result in robot RT100
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Fig. 25. Fixed speed rotation speed test result in robot RT100

Based on the clinic experience, the rotating speed of a PD patient will be getting lower
during the assessment, in order to get the clear observation, robot RT 100 was programmed
to roll at a variable speed and the rotating angle is analyzed as shown in figure 26.

D:suyutOpen GL-1Youria\robot_roll_var_speed_txt, raw data
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Fig. 26. Variable-speed rotation speed test result in robot RT100

Experiment 3: Finger pinching

In this experiment, a PD patient attempted to grip with his index inger and thumb
as much and quickly as possible. This grip movement was recorded and the instanta-



3D hand modelling and analysis using data-gloves 25

neous distance between sensor S1 and sensor S3 is calculated (ref. figure 27) and
saved as the analysis object.

A
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| |
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i
Vas Vasi

Fig. 27. Calculation of finger pinching motion

Ml=Vs, _thSll’ (42)
M2=|V1253 _V12SI|9 (43)

where:

M1, M2 are the distances between sensors S3 and S1 at different time #1 and 12
(ref. figure 27),

I},m and 1}1151 are the positions of sensors S3 and S1 at 1; I},253 and I},m are the
positions of sensors S3 and S1 at £2.
The frequency and speed analysis results are displayed in figures 28, 29. Figure 28

shows that the frequency of this movement in PD subject is 2.8 Hz. Speed variation in
this movement can be observed from figure 29.

D:\suyuOpen GL-1_fromMichalePCigeorge_26112001_txtigrip_withoutrobot_mag_txt txt, raw data
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Fig. 28. Finger pinching frequency measurement for the PD patient
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Fig. 29. Finger pinching speed measurement for the PD patient
Experiment 4: grabbing test

This experiment is similar to the grip experiment, the PD patient and a healthy per-
son attempted to grab their hands as much and quickly as possible. Instead of calculating
the distance between sensors S1 and S3 (ref. figure 27), the distance between sensors S1
and S5 is measured for further analysis (ref. figure 30).
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Fig. 30. Instant magnitude calculation of grab movement

M1=Vss = Vs ’ > (44)
M2 :‘szss - 1251l’ (45)

where:

M1, M2 are the distances between sensors S5 and S1 at different time /1 and 12
(ref. figure 30),
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I}nss and I}nsn are the positions of sensors S5 and S1 at 1,

17,235 and I}:zs] are the positions of sensors S5 and S1 at 2.

The frequency and speed analysis results are displayed in figures 31-34. The DFT
traces show that the grabbing motion for the PD patient has two dominant frequencies
at 2 and 4 Hz (ref. figure 31), whilst the normal control subject has a more distinct
motion frequency at 1Hz (ref. figure 33). Large speed variation of the PD patient’s
grabbing motion can be observed from figure 32 compared to relatively small speed
variation (ref. figure 34) of the normal control’s grabbing motion.

D:\suyu\Open GL-1_fromMichalePClgeorge_26112001_txt\grab_withoutrobot_mag_txt txt, raw data .
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Fig. 32. Grab speed test result in PD patient
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D:\suyutOpen GL-1_fromMichalePCisuyu_29112001 _txt\grab_021201_mag_txt ixt, raw data
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Fig. 33. Grab frequency test result in normal control
:
D:\suyu\Open GL-1_fromMichalePCisuyu_29112001_txt\grab_021201_mag_txt txt, raw data
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Fig. 34. Grab speed test result in normal control

6. Conclusions and further work

In repeated experiments with the subjects and robot simulator, the system was
found to offer a highly repeatable and accurate measure of hand motion of 5 Hz in
over the 0.4 m operating range achievable with the system.

The graphical hand model has been described and has been found to play an impor-
tant role in clinical assessment. Firstly it shows clearly whether the system is operating
correctly, checking visually the status of each sensor and whether the hand is within
range of measurement. Secondly it shows particular motion characteristics well for



3D hand modelling and analysis using data-gloves 29

clinical professionals, for example the extent and frequency of essential tremors and the
speed changes that occur during wrist rotation or finger pinching measurement.

By using off-line analysis the graphical recording of the hand motion may be used
to clinically relevant parameters of movement in patients with two common disorders,
essential tremor and Parkinson’s disease can be realistically recorded and simulated
for both clinical practice and research purpose. Two examples have been provided in
sections III and V using the DFT frequency analysis algorithm to extract the essential
tremor measurement and the instantaneous sensor speed measurement.

The application of a data-glove with a 3D electromagnetic imaging system objec-
tively records data for the three cardinal features of Parkinson’s disease: tremor, ri-
gidity and bradykinesia. Figure 13 has shown that the frequency of essential tremor
may be recorded using this technique and was found to be 4.5 Hz. Measurement of the
essential tremor present in subjects is currently not possible with the 3D imaging sys-
tem used in this study. The measurement speed would have to be at least doubled to
20-30 frames/s in order to capture the frequency of essential tremor. This goal will be
further researched in the near future with a redesigned higher performance image
capture system.

The method is considered to have potential benefit in a number of areas:

» more accurate diagnosis,

» recording progression of disease,

» monitoring the effects of therapeutic interventions.

The motor features of Parkinson’s disease are notoriously variable, particularly in
the moderate to advanced stages of the illness and any user-friendly system to provide
greater objectivity would be greatly welcome by clinicians.

In addition, a quantitative force measurement system is also used in this study to
provide an objective assessment of rigidity in Parkinson’s disease. A pair of Datacq®
gloves incorporating a set of force transducers is utilized together with a force triggering
facility controlled by a PC [15]. During the assessment of tone, while the doctor, who
wears the gloves, flexes and extends patient’s wrist, the force applied is fed back to the
force triggering system, recorded and saved on hard-drive for further medical analysis.
Meanwhile, force data is drawn into a chart marrying the existing 3D-motion system.
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