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Modelling of heat transfer in biomechanics — a review
Part I. Soft tissues
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The aim of this paper is to review available results that pertain to various heat transfer problems of
biomechanics. The present part covers the issues connected with modelling of the heat exchange in per-
fused tissues. The results are important for the design of hyperthermic treatment protocols, thermal injury
assessment, heat loss rate in adverse environments, constructing whole-body or whole-limb models of
heat transfer, etc. The division into two classes of models is proposed: continuum models and vascular
models (cf. also [[3]]). The shortcomings of the most popular bioheat transfer equations are discussed.

The effects of cryogenic temperatures on living tissues are described in the third part of the paper.
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1. Introduction

Comprehension of phenomenon of heat transfer due to blood perfusion in soft tissues is
important for all considerations of heat exchange in such tissues for various reasons. It
helps to predict the outcome of modern surgical treatments involving local application of
high temperature to diseased tissue. Heat sources include fiber optics coupled to Nd:YAG
(neodymium—yttrium—aluminium—garnet) lasers, microwave antennas, radio-frequency
transducers, ultrasound emitters, Joule-heated probes, saline-filled balloons and others. It is
necessary for constructing whole-body or whole-limb heat transfer models that can be used
for various practical purposes like predicting heat loss rate in water, wind cooling, thermo-
regulation efficacy etc., cf. [S0]. Modelling of heat transfer in soft tissues is also necessary
for an accurate assessment of energy dissipation rate in joints and for thermal analysis of
the first stages of cryosurgical protocols (before freezing when effects of blood circulation
are observed). The problems presented here are therefore inevitably linked with the issues
presented in the remaining parts of the paper.

One of the most important purposes of the modelling of heat transfer in living tissues
is to be able to predict the level and the area of potential damage caused by extreme



32 M. STANCZYK, J.J. TELEGA

temperature to tissues. In the first part of our paper, the issues concerning damage to soft
tissues caused by hyperthermia are briefly discussed. For a review of damage mecha-
nisms due to low temperatures the reader is referred to Part III of the present paper.

2. Modelling of heat exchange in perfused tissues

Heat transport in living soft tissues is supplemented with one important factor not
present in in vifro experiments, namely the vascularity. It needs to be taken into ac-
count in certain problems, while it can be omitted in others with only a slight penalty
in accuracy. The procedure usually applied during modelling of the heat transfer in
soft tissues is schematically depicted in figurel. Numerous phenomena of heat depo-
sition (surface convection, irradiation, Joule heat generation etc.) along with analyti-
cal and numerical results for different boundary conditions are discussed at length in
[21]. Here, we focus on the proposed forms of the bioheat equation which plays an
important role in the modelling process, as shown in figure 1.
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Fig. 1. Steps involved in the modelling of heat transfer
(e.g. during hyperthermia treatment) in soft tissues

Theoretical analysis of the heat transport in soft tissues has been an object of an
intense research. The models proposed can be basically divided into two categories
(cf. BAISH et al. [3]): vascular and continuum models. The former try to reproduce the
real vascularity of the tissue and to describe all local variations of the temperature
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near the individual vessels. They require detailed knowledge of the vascular geome-
try, unlike the continuum models, which account for the blood perfusion by means of
the effective conductivity of the tissue, which is dependent on the blood flow rate, or
by means of other global parameters.

2.1. Continuum models

2.1.1. The Pennes equation

The first continuum model was introduced by PENNES in 1948 to analyse heat
transfer in a resting human forearm [37]. The equation has the following form:

oT,
plc,—a—;—=l,V2Tl +Wblcbl(Ta _Tz)'*'qva (1)

where A is thermal conductivity [W/(mK)], p and ¢ are the density [kg/m’] and spe-
cific heat [J/(kgK)], respectively. The subscript bl labels the blood, 7 — the tissue, g, is
the volumetric, metabolic heat generation rate [W/m®]; T, denotes the arterial supply
blood temperature and wy, is the blood perfusion rate. When modelling hyperthermia
treatment with volumetric energy deposition the right-hand side of equation (1) needs
to be supplemented with an appropriate term. The internal heat generation rate is, in
general, dependent on temperature. Studies of metabolism of fevered patients indicate
that whole-body heat generation increases by some 0.7% for each 0.5 °C increase in
temperature, giving an approximate relation, cf. [31]

0,=85-1.07 %65 [w]. 2

In this equation, we have adopted a useful convention of using lower-case letters for
intensive quantities and upper-case — for extensive ones. Hence Q, denotes the overall
heat generation rate (per whole body), while g, — its density, as used in equation (1).

Table 1. Blood perfusion rates of various human tissues
in [cm*/(100g min)], after [19]

Tissue Normal perfusion Maximum perfusion
Skeletal muscle 2.5 60
Liver 29 176
Heart 70 400
Fat 8 30
Skin 200 497
Kidney 400 466

Basically, the Pennes equation (1) is the classical equation of heat transport sup-
plemented with a linear heat sink, which arises from the thermal equilibration of the
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blood in capillaries with the surrounding tissue. The idea behind the Pennes equation
is that the blood is supplied to the tissue at an arterial temperature T,, perfuses the
tissue at the rate wy [kg/(m’s)], attaining the thermal equilibrium with it and then is
collected in the veins. The perfusion rate is thus the key parameter in calculating the
heat transfer. Blood perfusion rates in different tissues are estimated in table 1. The
data provided by Valvano (1987) are cited by DAVIDSON et al. in [19].

As shown in table 1, the values of maximum perfusion rate are often greater by an
order of magnitude than those encountered in regular conditions. An increase in the
perfusion rate value can occur as a result of vasodilation, which is a temperature-
dependent thermoregulatory mechanism, ([3], [S0]) or can be induced pharmacologi-
cally. The effects of vasodilation, which can be modelled via the single parameter wy,
in the Pennes model, have been more thoroughly examined by means of vascular
models, cf. [47], [48], [60] and also Section 2.2. In the hyperthermic treatment of
tumors, the significant nonuniformity of the perfusion throughout the cancerous tissue
has to be accounted for in order to obtain the agreement with experimental data. The
necrotic core of the tumor is perfused much less than the outer boundary, where the
tumor is growing. Furthermore, the geometry of the vasculature in the tumor can
change rather rapidly, cf. [16]. Modelling of such nonuniformities can be done with
several regions of uniform perfusion ([16], [43]) or by means of continuous function
of depth, for example, for lymphosarcoma, cf. [28]

wy =120+ 15132 [cm®/(100 g min)], 3)

where ¢ = #/R, r is the radial position within the tumor and R is the tumor radius. The
formulation, analytical solution and numerical evaluation of the solution for the multi-
region transient Pennes equation applicable to the cases of simple spatial variation of
perfusion rate are given in [22], [23].

Pennes equation (1), also called the bioheat equation or heat-sink model, is widely
used for prediction of temperature elevation during hyperthermia (cf. [16], [28], [34],
[35], [42], [43]) as well as for predicting a temperature response in cryosurgical pro-
tocols (cf. [27], [40], [41]). In the latter case, the blood perfusion term is often as-
sumed to be nonlinear with respect to temperature to account for the fact that blood
flow ceases at a certain low temperature. Common usage of the Pennes model is not
always accompanied by careful examination of its limits of applicability. These limi-
tations originate from neglecting the effects of thermally significant large vessels, cf.
[7]. The discussion of the shortcomings of equation (1) was conducted by numerous
authors (cf. [21], [7], [8], [16], [17], [30], [53], [58], [59]) and ranged from putting
emphasis on the applicability limitations [16] to complete negation of its validity [58].
The main drawbacks of the Pennes model have been outlined by WULFF [59]. Most
important points are:

(i) The Pennes model assumes that blood arrives at each point in the tissue at one
temperature 7, regardless of the distance, which separates that point from the supply-
ing vessel. No transport mechanism has been found to accomplish such a requirement.
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Furthermore, the local arterial temperature depends on the temperature gradient in the
tissue resulting from environmental conditions as shown in [8].

(ii) The blood perfusion term fails to account for the directed character of the
blood flow.

(iii) The blood perfusion term has been obtained via the global energy balance for
blood and is applied to describe local energy balance for tissue.

(iv) The first-order differentiability condition of numerous physical entities in the
equations like heat flux, physical properties and heat generation is not necessarily met
in heterogeneous tissue structures.

The Pennes equation is also unable to account for local temperature variations
caused by large vessels, a feature inherent to all continuum models and unacceptable in
certain applications like localised hyperthermia. The tumor regrowth that is usually re-
ported to occur in the immediate vicinity of blood vessels most probably results from
underheating of these locations. This is caused by intense cooling by blood, cf. [8].

The tissue temperature in the Pennes model is typically defined, cf. [2], [11]

0= [T, @)
[/

where the scale of the averaging volume ¥ is assumed to be much larger than the size
of thermally significant vessels and much smaller than the size of the tissue region
itself. BAISH [2] has pointed out that no such scale exists because the vascular tree
consists of vessels of virtually all sizes.

Table 2. Properties of different kinds of blood vessels after [11]

Vessel Percentage of Avg. radius Avg. length Xeq
vascular volume [pm] [mm] [mm]
Aorta 3.30 5000 380 190000
Large artery 6.59 1500 200 4000
Arterial branch 5.49 500 90 300
Terminal arterial branch 0.55 300 8 80
Arteriole 2.75 10 2 0.005
Capillary 6.59 4 1.2 0.0002
Venula 12.09 15 1.6 0.002
Terminal vein 3.30 750 10 100
Venous branch 29.67 1200 90 300
Large vein 24.18 3000 200 5000
Vena cava 5.49 6250 380 190000

Xeq— thermal equilibration length.

The thermal equilibration length in the Pennes model is assumed to be infinite for
all vessels except the capillaries and zero for capillaries. This is also a nonphysical
assumption. In table 2, the estimates of this value are given for different kinds of ves-
sels, see also figure 2 [3], [4], [53]. We recall that the thermal equilibration length has
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been defined by CHEN and HOLMES [11] as the length over which the temperature
difference between the tissue and the blood is reduced by the factor e.

A
T>T,

BLOOD TEMPERATURE

Y

Fig. 2. Temperature of blood as it circulates through the vascular system, after [11]

The Pennes equation can be supplemented with the correction factor — the effi-
ciency coefficient, multiplying the heat-sink term in equation (1). It accounts for the
thermal equilibration of the returning vein (thus making allowance for the fact that the
returning venous blood temperature may differ from tissue temperature). This coeffi-
cient is a function of the complex geometry of the system and its derivation is de-
scribed in detail in [55].

In spite of the serious criticism of the Pennes model, its predictions are often supe-
rior to those of more elaborate formulations (see the effective conductivity models
below). This fact gives rise to the need for reconsidering the physical foundations of
the approach. CHARNY et al. [9] have suggested that the blood perfusion term in
equation (1) does not represent the isotropic thermal equilibration in capillaries, but
describes the small vessel bleed-off occurring in the regions of the largest counter-
current vessels and supplying the capillary bed in tissue. In this manner, the tempera-
ture of the blood entering these capillaries is the temperature of the blood in the larg-
est vessels. In the region dominated by smaller vessels, this condition is not always
satisfied and models other than equation (1) are preferred [9].

An issue that is important in assessing the predictive capabilities of any model is
the uncertainty originating from the fact that only approximate values of model pa-
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rameters are usually known. This is even more pronounced in the field of biome-
chanics, where the scatter of measurements is always considerable. Typical values of
the Pennes model parameters are presented in table 1 and table 3. In [33], the analysis
of the uncertainty arising from the approximate character of the model parameters in
the Pennes equation applied to the typical hyperthermia treatment was performed. The
analysis assumed power deposition by laser or microwave governed by Beer’s law:

g, (x)=nPye ™.

The variable x denotes the depth in the tissue, L is the position of the skin surface.

Table 3. Values of thermal properties of tissue used in several applications of models of bioheat transfer

. . Blood specific Tissue thermal Metabolic heat
Model s heat conductivit eneration rate
¢ [(keK)] . ¢ ;
' cw [J/(kgK)] A [W/(mK)] gu[W/m’]
Jiji et al., 3-layer steady-state model 3800 0.5 0
vascular model
[29]
Durkee et al., 3800 3300 1.6 145
numerical evalua-
tion of Pennes
equation [23]
Brinck and Werner, 3800 3800 0.465 245 — extremity
3D vascular at rest and core
model [8] and fat layer in
exercise conditions
24500 — muscle
layer in exercise
conditions
Shitzer et al., 2102 — extremity core 3899 1.064 — extremity core |170.5 — extremity

numerical model

3136 — muscle

0.418 — muscle

core

of extremity 2520 — fat 0.204 — fat 631.9 — muscle
[46] 3780 — skin 0.293 —skin 5.0 —fat
247.4 — skin
(basal values)
Song et al., steady-state model 3800 0.5 — intrinsic Dependent on
combined conductivity model parameters
macro- and (non-perfused tissue), |and blood inflow

microvascular
limb model [49]

effective value
predicted by model

Peclet number:

245 — for supine
resting state

2430 — for moderate
exercise

The parameters under consideration were the thermal conductivity A, the blood
perfusion rate wy, metabolic heating rate ¢,, the scattering coefficient 5 and the ap-
plied power P,. The volumetric heat generation rate is expressed as:
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qv = qm + qr-
The measure of temperature uncertainty AT is defined:

2 2 2 2 2
AT = (a—TA/l] + —a-T—Awb, - a—TAq,,, il Long] & a—TAPO .
o4 oy, aq, on oP,

It can be expressed in terms of the relative uncertainties as follows:

AZ:\/(alnT Al)2+[ oInT Aw, T{ oInT Aq,,,J2+[a|nr AnJ2+(alnT APOJZ .
T olni 2 Olnw, wy, Olng,, q, olnn n olnPR PR

In figure 3, the various contributions to overall uncertainty are presented against
the temperature profile during the simulated 1-D surface heating of the specimen [33].
The greatest contributions come from the blood perfusion rate, the power flux applied
and the conductivity uncertainties. The influences of metabolic rate and scattering
coefficient are negligible which means that the accurate determination of these pa-
rameters is altogether not critical for the accurate determination of the temperature

field. The effect of metabolic heat generation is in fact omitted by many researchers
working on hyperthermia.
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Fig. 3. Temperature distribution (°C) calculated in accordance with the Pennes model (1)
and the sensitivities, as a function of spatial coordinate.
A: OInT g 0T ¢ dInT p. T 'g. dInT afier [33)
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Similar investigations of parameter sensitivity in the Pennes equation have been
conducted by MAJCHRZAK and JASINSKI, [34] for the 2-D transient temperature field
in the cutaneous region of the tissue subjected to external heat source. These authors
examined the sensitivity to specific heat, tissue thermal conductivity and the blood
perfusion rate. Their results indicate significant temperature field sensitivity to ther-
mal conductivity and negligible sensitivity to other parameters considered. This is
inconsistent with findings of LIU [33] who has found sensitivity to blood perfusion
rate to have a profound contribution, see figure 3. The reason for this may be the fact
that this author considered a significantly lower base value of the blood perfusion —
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2000 [W/(m’K)] compared to 5000 [W/(m’K)] used in [34]. L1U [33] also expressed
his results in terms of relative uncertainties: dIn7/dIn A instead of plain 0T/0A as

in [34] which might have biased the interpretation.

2.1.2. Directed perfusion model

The second continuum model is the directed perfusion model proposed by WULFF
in 1974 [58]. Its derivation relies on the assumption that, unlike in the Pennes model,
the blood is completely equilibrated with the tissue all the time. Recall that in the
heat-sink model it is assumed to retain arterial temperature until it reaches the capil-
laries and then to momentarily equilibrate with tissue. When the energy transport is
assumed to be not only due to the conduction but also due to the convection by the
moving blood (in equilibrium with the tissue) the energy flux according to WULFF
[58] is as follows:

q=-7VT, + pyh,U, 5)

where Ay, is the specific blood enthalpy and U is the Darcy velocity of the blood flow.
The first term on the r.h.s. in equation (5) is the usual Fourier-law conductive flux.
The second term accounts for the blood directed convection.

Inserting equation (5) into the energy balance equation and putting 7y, = 7, one ar-
rives at

oT,
Pt 3_;:’11V2T1 - PucuU VT, +q,. (6)

It should be noted that this model applies to cases where the blood is in equilib-
rium (or in quasi-equilibrium) with the tissue and during hyperthermic treatments it is
often not the case (cooling effect of the large vessels is then pronounced). A quick
glance at figure 2 and the data in table 2 indicate that the assumptions leading to
equation (6) are valid only in a certain range of physical situations strongly dependent
on the kind of vasculature. CREEZE and LAGENDUK [17] have also pointed out that the
blood flow is not always unidirectional, vessels are often combined to form counter-
current pairs and their orientation is frequently isotropic.

2.1.3. Effective conductivity models

The effective conductivity models (also termed kg or Aer models) treat the energy
transport in the tissue in terms of heat conduction only. The effect of vascularity is
contained in the thermal conductivity term which is often assumed to be isotropic and
dependent on the blood perfusion w;,. The dependence usually assumed is of the form

Agr =4, (L +aywy)
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or
A =4 (1 +a,wd),

where 4, is the intrinsic thermal conductivity of the tissue and a;, @, are the parameters
that depend on the vessel size and density.

Theoretical foundations of the effective conductivity model have been laid down by
WEINBAUM and JUJI [52]. On the basis of the knowledge of anatomical structure of vas-
culature and with the aid of several simplifying assumptions they developed a compact
formulation of the heat transfer equation in the soft tissue. The authors called their
model the simplified bioheat equation because it is a simplified form of some of the
ideas derived from vascular models that are described in Section 2.2. The Weinbaum—
Jiji effective conductivity model is derived with the following crucial assumptions [52]:

e the energy equation is formulated in terms of a single local average blood-tissue
temperature,

e local average blood temperature can be approximated by the local tissue tem-
perature,

e the primary heat transfer mechanism is the incomplete countercurrent exchange
in thermally significant vessels (greater than 40 um in diameter), which means that the
heat loss from the artery is nearly but not quite equal to the heat gained by the vein.

Using these assumptions and considering the closely spaced, countercurrent ar-
tery—vein pairs Weinbaum and Jiji derived the expression for the effective conductiv-

ity tensor [52]:
2.2
A = [51/ +P_7;—r(%JPezliljJs Q)

o 1

where » is the vessel number density (geometrical parameter of the vasculature), 7 is
the vessel radius (assumed equal for artery and vein), /; are the direction cosines of the
vessels relative to the coordinate axes and & = (J;) is the Kronecker delta. Pe is the
blood flow Peclet number defined by
2py,C U
Pe:PrRe=ﬂ-bl—, ®
bl

where Pr and Re are Prandtl and Reynolds numbers, respectively, and u is the average
blood flow velocity. Moreover, o is the shape coefficient describing the thermal cou-
pling between the countercurrent artery and vein obtained from the consideration of
two-dimensional conduction in the plane perpendicular to the axes of vessels.

We have

U S
cosh™ ﬂ ’
2r(S)

o=

®
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where / is the distance between the axes of the countercurrent vessels at the point
determined by the coordinate S along the axis of the vessels.

From (7) we infer that the effective conductivity derived by WEINBAUM and JlI
[52] is the tissue intrinsic conductivity with an additional term accounting for the
countercurrent convection.

The Weinbaum-Jiji effective conductivity model energy equation is derived [52]
in the form:

2 212 l
or @ [ze“ ar]wv_n nr’ By ooy Ol 0T e

c—=—o/[24; .
or ox, | ' Ox; 404 7 9x, Ox;

]

This equation is the ordinary Fourier—Kirchhoff equation for the heat conduction
in anisotropic media with an effective conductivity and an additional term on the r.h.s.
This term accounts for the possible variation of vessel radius along its length and for
the directed capillary perfusion between artery and vein. It is small and vanishes en-
tirely when the vessels are straight. Obviously, the summation convention over the
repeated indices applies to the equation (10).

From equation (7) the formula for the effective scalar conductivity in one-
dimensional case can be obtained:

2.2
p =,1,[1+ ”’Z £ (%JP&J. (11)
(o} 1

As estimations by Weinbaum and Jiji indicate, for a tissue with vessels that have the
radius of more than 100 pm, the enhancement in conductivity is noticeable and for larger
vessels the effective conductivity is several times larger than the tissue intrinsic property.

The above-mentioned assumptions leading to the development of the Weinbaum—
Jiji bioheat equation, mainly that the average arterio-venous temperature is equal to
tissue temperature, have been criticized in [8] and [56]. Results of computations on
elaborate vascular model by Brinck and Werner contradict this assumption, cf. [8].

The existence and importance of countercurrent heat exchange at the certain ves-
sel scale range have been confirmed by numerous experiments both in normothermic
(i.e. when tissue is at physiological temperature) and hyperthermic (vasodilated)
states, cf. [47], [48], [60], [61].

The effective conductivity models do not depend explicitly on arterial tempera-
ture. Increase of the blood flow rate results therefore in enhancement of the effective
conductivity of the tissue, regardless of whether warm blood perfuses cold tissue or
cold blood perfuses warm tissue. Consequently, perfusing a cooler tissue with warm
blood will result in the decrease in temperature owing to enhanced conduction to the
surface — the effect opposite to that predicted by Pennes equation (1). WISSLER [56]
argues that this discrepancy is in favour of the latter and proposes supplementing the
Pennes equation with additional “efficiency factor” to account for the incomplete
countercurrent heat exchange in a simple way.
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WEINBAUM and JUI [54] have suggested that a hybrid model, consisting of the
Pennes model and the effective conductivity approach, should be used. They propose
that the thermal equilibration parameter (thermal equilibration distance normalized by
the length of the representative vessel):

TrPe
e:
20 L

(12)

should be used to distinguish whether the Pennes model (e > 0.3) or the Weinbaum—
Jiji bioheat equation (e < 0.3) applies. Similar suggestions were made by CHARNY et
al. [9], who compared the normothermic and hyperthermic responses of the
Weinbaum-Jiji A.x model, the Pennes model and more sophisticated three-equation
model. The main conclusion of their study is that the Pennes model provides
a relatively good prediction capabilities and should be therefore incorporated in the
proposed hybrid model by means of criterion (12). This means that under normother-
mic conditions equation (1) should be used in the regions of tissue containing the first
generations of supply vessels (larger than 500 pm in diameter). As the study by
CHARNY et al. [9] have shown, neglecting the countercurrent heat exchange in these
regions does not lead to any serious discrepancies. The Weinbaum-Jiji model is more
suitable in the regions of tissue containing smaller vessels.

Limitations of applicability of the Weinbaum-Jiji bioheat equation were also con-
firmed by VALVANO et al. [51] by means of analysis and thermistor measurement of
temperature field in the canine cortex.

The validity of effective conductivity approach was tested by BAISH [1], who
viewed the tissue with embedded countercurrent vessels as a composite material con-
sisting of low-conductivity tissue matrix and high-conductivity fibers representing
paired countercurrent vessels. This author obtained the following formula for the fiber

conductivity:
(mcbl)z -1(1 )
A, =—""—cosh™ | —|, 13
7 irn?a r il

where 2/ is the distance between axes of the countercurrent vessels.

Because of the quadratic dependence on the blood flow rate, the conductivity
computed using equation (13) varies in a very wide range. For example, for the ves-
sels that have the radius of 300 um the respective fiber conductivity exceeds 3000
[W/mK], and for the vessel radius of 500 pm this conductivity is 320 000 [W/mK].
No real material has such a high conductivity. This result is explained by the fact that
the convection, really taking place within the veins, is much more efficient heat trans-
fer mechanism than the conduction. The intrinsic conductivity of the tissue is of the
order of 0.2-0.6 [W/mK] and the fibrous composites containing fibers that are much
more conductive than the matrix are known to be poorly modelled by the effective
conductivity, cf. [1]. If we consider the array of parallel countercurrent vessel pairs



Modelling of heat transfer 43

embedded in the tissue lying along the z-axis and impose an external temperature
gradient parallel to the axes of vessels, the total heat flux can be expressed by [1]:

oT,
q= _AI -a_Zl + n(qanery + G vein ) ’

where (Garery T Gvein ) is the heat exchange with tissue by single vessel pair. So, the
effective conductivity approach is admissible only if (O, + O, ) is proportional to the
tissue temperature gradient d7,/dz. Heat exchange by blood vessel pair is, however,
proportional to the gradient of mean blood temperature 7,,. Therefore, the assumption
by Weinbaum and Jiji that d7,/dz = dT,/dz is necessary in the derivation of effective
conductivity model, cf. [1].

The three continuum models of heat exchange in perfused tissues described above
can be used to construct a mixed model. For example, CHEN and HOLMES [11] sug-
gest that thermal contributions from individual large vessels should be calculated
separately and for the bio-heat equation they propose the following formulation:

oT,

L=V (X)) + wyey (T, =T,) - pucyU-VT, +q,, (14)

PiC E

where w;, and Ta' are the perfusion rate and arterial temperature, respectively, modi-

fied to avoid double-counting of the contribution of large vessels.
CREZEE et al. [18] considered a mixed heat sink — effective conductivity approach
formulated in the following equation:

ar,

a_T:Aeffvaz + fwyen (T, = T,)+4q,, (15)

PiC

where f is a model parameter dependent on the local vascularity structure. It can be
shown that for closed vessel network 0 <f< 1.

o eff. cond.
=
g I
oy
S o
g E heatsink
5o
E =
2 g measurement
23 (least sqauares fit)
8
>

perfusion rate

Fig. 4. Comparison of the effective conductivity and the Pennes (heatsink) model predictions
with measurements; “+” denotes a measurement data point, after [17]
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The experimental verification of the continuum models presented was performed
in [17] and [18]. In [17], the measurements of temperature field in bovine kidney
cortex were conducted. The comparison between the heat-sink and the effective con-
ductivity models were generally in favour of the A theory although the scatter of the
measurements was considerable, as can be seen in figure 4. In this figure, the non-
dimensional temperature of the vessel wall is depicted against perfusion rate ranging
from 0 to 55 cm’/(100 g min). The non-dimensional temperature is defined:

_ T-T(R)
T T(0)-T(R)’

where 7(0) denotes the temperature at the centre of the tissue cylinder considered and
T(R) — at its outer boundary. In figure 4, 0 ranges from 0 to 9.

Other results indicate that the increase of the perfusion from 0 to 38 cm®/(100 g
min) caused a significant decrease of the vessel wall temperature suggesting a 6-fold
decrease in the thermal resistance of perfused tissue. The prediction of the Pennes
model yields a 15% decrease. Other tests confirmed that the Ay model is superior to
the heat-sink model, especially in small-scale predictions. In the case of larger vessels,
the use of discrete (vascular) description is preferred [18].

ROEMER and DUTTON [44] argued that the Pennes perfusion term and the effective
conductivity are nonphysiological quantities that are related to the true capillary per-
fusion in a problem-dependent manner. They provide detailed derivation of the uni-
versal tissue convective energy balance equation.

2.2. Vascular models

The idea behind developing vascular heat transfer models for soft tissues is to use
the data of actual placement of blood vessels within the tissue to predict the heat flow.
The need for accurate temperature predictions arose in the course of the development
of modern hyperthermic protocols. The cooling effect of large vessels present at the
site of target tissue escapes the continuum models entirely.

The three basic concepts of vessel placement lead to the wunidirectional vessels
model, countercurrent vessels model and large-small-large vessels model. These are
briefly discussed below, cf. also [3].

2.2.1. Unidirectional vessels model

This model relies on the assumption that the blood arrives in the tissue at artery
supply temperature and exchanges its heat with the tissue along the vessel. Two
unknown quantities, namely: the tissue temperature 7; and the vessel blood tem-
perature Ty, are considered. Both are defined along the vessel as the local average
quantities:
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1
z<S)—Z£TdA, (16)
1
1 1
T..(S) 5 J;TdA, (17

where 4, and Ay are domains occupied by the tissue and the blood depicted in figure 5
as the grey ring and white circle, respectively. The energy conservation in a tissue
cylinder surrounding blood vessel is considered.

Fig. 5. Generic tissue cylinder considered in the model of unidirectional vessels

The equation for the tissue is [3], [4],

o, _, o
or as?

where n is the vessel density and gy, is the rate of heat flow into the vessel in [W/m]
derived from the energy balance for vessel:

PiC, —nqy t+4,, (18)

. Iy
=TH, Py Cry i —— . 19
i bl L1 ol s (19)

Here u is the bulk blood velocity in the vessel and S is the distance measured
along the vessel, whether it be straight or curved. Let us introduce the convection
boundary condition on the vessel wall:

gy =2mrya(T, —Ty), (20)

where a is the convection film coefficient [W/(m?K)] and T, is the vessel wall tem-
perature. If gy, is phrased in terms of the temperature difference (7,- T, ):

qu =40,(T, -Ty), 21

then the shape coefficient can be obtained from the consideration of the heat transfer
in the plane perpendicular to the vessel axis [4]:
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2n
= s 22
ST A2 1 2
Ty Ay Nu 2
where Nu is the Nusselt number of the flow inside the vessel:
/
ot e P 23)
Al

According to CHATO [10] Nu is equal to 4, cf. also [4]; [, is the characteristic di-
mension of the flow equal to the vessel diameter 2ry. The value of Nu given here cor-
responds to vessels large enough, whose diameters are much larger than size of the
blood cells. This is not the case of the microcirculation, [36].

Equation (18), (19), (21) and (22) constitute the unidirectional vessels model. The
model neglects the heat conduction in the blood along the vessel and the heat generation in
the blood. Furthermore, as experimental tests of the vasculature indicate, all major vessels
start out as a closely juxtaposed countercurrent artery—vein pairs. They diverge substan-
tially forming a roughly periodic array in the generation prior to terminal vessels, cf. [53].

The heat conduction shape coefficient approach, consisting in relating the heat
transfer to vessels to the blood—tissue temperature difference by means of the propor-
tionality coefficient obtained from planar steady-state analysis, is successfully used in
other formulations presented below.

2.2.2. Countercurrent vessel model

In this formulation, the vessels are assumed to exist only in the form of counter-
current artery—vessel pairs distributed with the density ». In this model, the basic
mechanisms of heat transfer are countercurrent heat exchange between arteries and
veins and the vessel-tissue heat transfer. The difference between arterial and venous
blood temperature is considered to be the driving force of the former, while the differ-
ence between average temperature in both vessels and the tissue is assumed to cause
the latter mode of heat exchange. Note that for two vessels located symmetrically in
the tissue cylinder (see figure 6), close to each other, the difference in temperature
between the vessels does not influence the net heat transfer to the tissue [4]. In the
previously described models, countercurrent exchange was not present.

The model considered contains three key variables: the tissue, artery blood and
vein blood temperatures, denoted by 7,, 7, and 7,, respectively. The equations are
constructed using the shape coefficient formalism, cf. [3], [4]. Finally we get:

(i) in the tissue

oT, o°T, T, +T,
PiC a_;':lt -aS—zt—nﬂ,O'Z(Tl _—_] +q,, (24)
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(i1) in the artery (feeding vessel)

_0T, Ao T,+T,
nrozpblcblu_a—s_z’ltaA(Tv ~ b+ ‘22 (T: T ), (25)
(iii) in the vein (draining vessel)
_ 0T, Ao T,+T,
7tr02pblcblu3$,—=’llo-4(Tv ~T)- '22 (T; T ] (26)

Fig. 6. Generic tissue cylinder considered in the model of countercurrent flow vessels

Here g, is the shape coefficient for the heat exchange between individual vessels
in the countercurrent pair, while oy is the shape coefficient for the heat exchange be-
tween vessel pair and tissue. These coefficients are estimated, similarly as in the
model of unidirectional vessels, on the basis of considerations of steady-state tem-
perature distributions in the plane normal to the axes of the vessels, using the super-
position method. The derivation, along with values for several kinds of vessels, is
given in [4].

2.2.3. Large-small-large model

This model is somewhat simplified in comparison with the last one. It relies on
the assumption that vasculature has a hierarchical structure with large arteries
feeding smaller and smaller vessels, which in turn feed the capillaries, see figure 7.
The blood from capillaries drains into larger and larger vessels, which eventually
feed the large veins that are countercurrent with the large arteries. The most im-
portant assumption here is that significant heat transfer with the tissue occurs only
at the level of capillaries. The thermal coupling between the large vessels and the
tissue oy in equations (25), (26) is assumed to be small and the equilibration length
in the capillaries to be much shorter than their length. This common belief is in
contradiction to findings of CHEN and HOLMES [11], see also table 2, figure 2 and
the discussion below.
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Fig. 7. Generic tissue cylinder considered in the model of large—small-large vessels

In this model, the heat-sink term is employed to account for vasculature similarly
to the Pennes model (1), see Section 2.1.1. Similarly, the instantaneous thermal
equilibration of the blood with the tissue is assumed to take place in capillaries, so
this heat-sink strength is proportional to arterial blood-tissue temperature difference,
see equation (1). Unlike in the Pennes model, it is expressed here in terms of decay of
the blood flow in artery due to the blood draining to capillaries along the major ves-
sel:

oT, a°T, 0 _
PiC a—zf:l' —aTS:zL"'pblcbl (Tz _Ta)g(’?’”’ozu)*” q,. 27)

The last equation reduces to the Pennes equation (1) provided that
0 21—
Wy =—py —\nrgu ). 28
bl = ~Pui s ( 0 ) (28)

The model presented and the Pennes model are conceptually different. Equation
(28) should be understood as a certain idealisation applied at a scale that is not too
small. Otherwise, when individual capillary branches are considered, the flow along
the major vessel becomes discontinuous and therefore equation (28) becomes useless.

BAISH et al. [3] made a comparison of the above-mentioned vascular and contin-
uum models. These authors concluded that in limiting cases, with respect to the vessel
thermal equilibration length, the predictions of vascular models approached the pre-
dictions of continuum models.

The linear heat-sink behaviour, such as that found in the Pennes equation, exists
only in the large—small-large vascular model. This model, however, implies the exis-
tence of large vessels that are not equilibrated with the tissue and which are the source
of the local temperature nonuniformities that escape the Pennes model completely.
The magnitude of these nonuniformities can be comparable to the predicted tempera-
ture elevation due to the heat source, see also [58].

The vascular heat transfer models presented above are meant to be used in the case
of complex geometry of the vascular system. This is a formidable task and identifica-
tion of thermally significant vessels, in order to simplify it, is fully justified. Since the
main drawback of the continuum models is that they cannot predict local temperature
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irregularities caused by the presence of large, relatively sparsely distributed vessels,
which are easy to identify, it is reasonable to construct mixed models. Such models
account for each large vessel individually and all “small” vessels are modelled via the
heat-sink type term or via the effective conductivity. The important question is which
vessels are small enough.

In figure 2, the possible temperature of blood element as it passes through the vas-
cular system is depicted. The two dashed lines denote the temperatures of the two
kinds of the solid tissue that the blood element can encounter during its transport —
namely cooler and warmer than 7, (arterial temperature). As investigations of CHEN
and HOLMES [11] indicate and as can be inferred from figure 2, the equilibration of
the blood with the solid tissue takes place between the terminal arterial branches and
the precapillary arterioles, not in the capillaries as it was usually previously assumed.

This hypothesis was fully supported by the experimental investigations due to LEMONS
et al. [32] and WEINBAUM et al. [53] who measured the temperature field in the rabbit
thigh in vivo in order to identify the thermally significant vessels. Their measurements
indicate that all arteries of the diameter d, < 100 pm and all veins with d,<400 pm can be
considered fully equilibrated with the surrounding tissue in normothermic conditions. This
needs not to be true during hyperthermic or cryogenic treatment.

Deep tissue layer
(>4mm)

Fig. 8. Three essential layers of peripheral circulation distinguished by WEINBAUM et al. [53]

As can be seen from the above considerations, modelling techniques for large ves-
sels and capillary vasculature are different. Following this observation and the exten-
sive anatomical study of the surface tissue WEINBAUM et al. [53] proposed a three-
layer model of microcirculation contributing to the heat transfer in soft tissue, cf. also
[29]. The model contains layers depicted in figure 8:

e Deep tissue layer. The thick region of thermally significant large veins and ar-
teries. For four or more generations they proceed as closely juxtaposed branching
countercurrent artery—vein pairs. The cross-sectional surface areas of these vessels are
large and their characteristic thermal equilibration lengths are large compared to their
lengths (see table 2.). In this layer, the thermal state is characterized by three different
temperatures, namely of arterial blood, of venous blood and of local tissue. The
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countercurrent exchange between paired vessels is the dominant mode of the heat
transfer here. These large vessels during their final generations gradually transform to
a periodically arranged array of terminal vessels at the bottom of the next layer.

e Intermediate layer. Blood is assumed to equilibrate almost immediately with the
tissue when it enters this layer. The thermal state is therefore characterized by the
local tissue temperature only, so individual vessels are no longer considered. Hori-
zontal temperature gradients may exist due to temperature nonunuformities in the
preceding layer. Terminal vessels are assumed to be regularly spaced.

e Skin. This layer, also termed the cutaneous layer, contains large vessels that act
as a volumetric heat source. They are far from the thermal equilibrium with the sur-
rounding tissue. The dominant heat transfer mode is the conduction in the direction
parallel to the surface.

This three-layer model of the surface tissue heat transfer is described at length by
Jul et al. [29] and WEINBAUM et al. [53].

Another three-dimensional, three-layer model of surface tissue heat transfer has
been proposed by BRINCK and WERNER [8]. The example vascular geometry served
for the numerical calculations in resting, exercise and cold states distinguished by
different metabolic heating and environmental conditions. The blood temperature
along the arterial and venous vessels and appropriate tissue temperature fields were
calculated. These authors conclude that such vessel-by-vessel approach is limited to
small volume of the tissue due to the lack of knowledge about the detailed, individual
vascular geometry and the large size of resulting computational tasks.

This difficulty has been partly resolved by the model proposed by BAISH [2]. The
algorithm of vascular growth has been developed to generate the detailed vascular
geometry. The physiologically justified Gottlieb procedure was chosen. This proce-
dure of growth process runs as follows, cf. [2] and the references therein:

1. Begin with a sparse tree containing only the supply vessel.

2. Assume the grid of cells.

3. Check the distance from each cell to the existing vascular tree.

4.1f the cell is further than some threshold distance then a new vessel is added
between the cell and the nearest point on the existing vascular tree.

5. Decrease the threshold distance, refine the cell grid and repeat the procedure
starting from 3 until a desired density of the vasculature is reached.

The radius of the blood vessels can be obtained from modified Murray’s law

=Y, 29)
J

where the index j denotes daughter vessels of the vessel i and the value of # is typically
2.7. The mass flow is usually related to the vessel radius by means of the equation:

ii=(ﬁﬂi (30)
’rlj rj
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The above rules allow one to construct the entire vascular tree starting from a few
supplying vessels. The generation encompasses all sizes of vessels so no arbitrary
differentiation into “thermally significant” and “thermally insignificant” is necessary.
Despite the simplicity of the generating algorithm and its numerous flaws the results
resemble the real vasculature in many respects. Since they are not any real but
“virtual” vasculature the statistical interpretation of the results of associated model of
heat transfer has also been proposed [2].

An attempt to apply some of the above-specified ideas to the construction of the
whole-limb heat transfer model was made by SONG et al. [49]. This model is contep-
tually based on the models being developed earlier cf. [29], [53]. It is based on the
three-layer structure of the limb: core, muscle tissue and the cutaneous layer, the latter
being subdivided further into the inner and outer skin regions, see figure 8. The limb
model does not include bone tissue. The layers form a cylinder of variable cross-
section. It is then discretized into disc-like elements. The arterial temperature supply-
ing the limb is known, the venous return temperature is guessed at the beginning and
obtained by an iterative procedure. The model parameters include the inflow blood
Peclet number, the ratio of blood flow to arm to total blood supply to the limb, the
ratio of blood flow to the muscle layer to blood supply to the arm and the parameters
describing the heat loss to the environment (by the convection, radiation and evapora-
tion). Complete mathematical formulation of the model is quite complex, and for the
detail the reader is referred to [49].

2.3. Pulsatile blood flow effects

Any vascular model requires certain assumptions accepted for the heat exchange
on the blood vessel level. The most common practice is to describe the blood flow in
terms of the bulk average velocity and the heat transfer is then characterized using the
Nusselt number as defined by equation (23). Such an approach was employed in the
models described in sections 2.2.1-2.2.3. The Nusselt number is usually taken to be
around 4, cf. [10]. Such a situation is valid for the steady-state, fully-developed lami-
nar flow in blood vessel, which is seldom (if ever) the case.

In the real case, the blood flow is pulsatile and in largest vessels flow reversal may
occur [15]. In the terminal arteries, the velocity profiles are closer to the parabolic
shape and in the arterioles they characterize a hydrodynamically fully developed flow.
Since, according to figure 2 and table 2, these intermediate vessels are most important
in the case of the bioheat transfer, it is reasonable to assume a steady-state flow for
the purposes of estimating the heat exchange.

The analysis of these effects in a simplified case (straight rigid vessel) was per-
formed in [15]. It consisted of numerical analysis of the coupled momentum and en-
ergy equations supplemented with the mass balance equation, under the following
assumptions:

1. The blood is assumed to be a Newtonian fluid.
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2. The vessels are considered to be rigid.

3. The countercurrent heat exchange is neglected.

4. The vessel wall is assumed to be a perfect thermal sink, i.e. its temperature is
constant and higher than the blood temperature.

The results show that the pulsating axial blood velocity produces a pulsating tem-
perature distribution in flowing blood. This effect is negligible in the case of the
smallest vessels. It should be noted, however, that the value of through-the-wall heat
flux obtained for steady-state flow and the time-averaged value for pulsating flow
differ by up to 10% in the terminal arteries [17]. This effect is diminished by increas-
ing the pulsation frequency. In table 4, these differences are specified, see [17]. The
blood flow is characterized in terms of the Reynolds number and the Womersley
number a defined as follows:

Here R is the vessel radius, w denotes the blood time-averaged velocity, whilst
v is the blood kinematic viscosity and w is the radial frequency of pulsation.

Table 4. Convective heat transfer into a vessel. Differences between numerical steady-state
value g, and the value integrated over one pulsation period g, after [17]

Vessel Reynolds No. Womersley No. (9,955
7.25 - 6.8%
Aorta 1667 8.85 —2.6%
10.25 +9.4%
2 - 8.2%
Large vessels 120 3 - 7.6%
4 —6.3%
0.6 —-10.8%
Terminal arteries 20 0.7 -83%
0.8 —7.4%
Arterioles 0.02 0.017 -3.7%

The results presented in table 4 suggest that the influence of the blood flow pulsa-
tion should be accounted for in the theoretical modelling of the bioheat transfer.

3. Soft tissue damage due to hyperthermia

Thermal injury to living cells has been a topic of research for a long time. Its sig-
nificance has grown with the invention of weapons relying mainly on heat, such as the
flame thrower, incendiary charges or napalm and their use in numerous conflicts. The
early experimental and theoretical studies were therefore focused mainly on the heat



Modelling of heat transfer 53

effect on epidermal injury [25], [26]. The development of various therapeutic tech-
niques relying on the application of elevated temperature to degenerate tissues made
considerations of thermal damage mechanisms in other situations necessary.

It has been shown that the dissipation of heat is different in cancerous and in
healthy tissues and higher temperature can be attained within tumors. High tempera-
ture also has a sensitizing effect in the radiation therapy resulting in better response
and longer tumor control with acceptable normal tissue effects, cf. [38] and the refer-
ences therein.

The thermal treatment of cells leads to numerous degenerative events, but the se-
quence of events leading to the cellular death still is not well established. Various
internal structures of the cell were implicated to be targets of the thermal treatment
but none have been proven conclusively to be responsible for cellular death.

The widely-accepted model of thermal damage in a soft tissue is the first-order
rate process (the Arrhenius model), cf. [6], [24], [26], [39]. The measure of the injury
Q is introduced and its rate is postulated to satisfy the equation:

E—Q:Aexp(— E"], €10

dr BT

where B is the universal gas constant and 4, E, are the frequency constant and the activa-
tion energy, respectively; 7 denotes the time. The constants 4 and E, are model parameters
usually obtained experimentally. One can assume that = 1 marks the threshold of irre-
versible thermal injury that can be detected experimentally. Once this threshold is attained
in a given mode of heating after the time 7, the measured thermal history of the system is
used to derive the values of model parameters in accordance with the equation:

T4 Ea
1= Jexp(— BT(r)JdT

0

For an isothermal regime the time 7, is simply the reciprocal of the damage rate
defined by equation (31). Another way of the normalization is to define Q2 in terms of
concentrations of the original (native) tissue Co(7) and the damaged tissue C,(7) [13]:

_ Co(0)
Q)= In(—-—1 . (T)J , (32)

where Cy(7) + Cy(7) = 1 holds for every 7.

There is a wide variety of experimental methods used to identify the time 74 at
which irreversible cellular damage occurs. They rely on different physiological effects
and therefore the damage mechanisms to which they react are different. Some meth-
ods involve using fluorescent dye markers like propidium iodide, trypan blue or neu-
tral red, which diffuse through heat-damaged cellular membranes. These methods
measure essentially cellular membrane damage level which is not necessarily equal to
the overall damage measure Q. Another approach consists in assessing the colony-
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forming ability (clonogenics) of the heat-damaged cells after treatment, cf. [6] for
details. While this seems to give a good indication of cell viability, the method needs
considerable time for post-treatment incubation. In investigations of the viability of
the collagenous tissues, the heat-induced shrinkage is usually regarded to be a good,
measurable indicator of collagen denaturation, cf. [12], [13], [57].

As can be inferred from table 5 the values of model parameters obtained by using
different methods may vary significantly, cf. also [6] and [39] for a comparison. This
can give a clue as to what damage mechanisms are responsible for the detected ef-
fects. This insight can be gained from the consideration of the activation energy E,.

Table 5. First-order rate process model of thermal injury parameters
(see equation (31)), after [6], [26], [39]

. Activation energy E, | Frequency factor 4

Eissiie [kl/mole] [1/s]
Skin 628.5 3.1x10"
Prostrate tumor (clonogenics measurements) 526.4 1.04x10%
Prostrate tumor (propidium iodide uptake measurements) 244.8 2.99x10%
Prostrate tumor (calcein leakage measurements) 81.33 5.069x10"°
Arterial tissue 430 5.6x10%
Erythrocyte membrane 212 10°!
Hemoglobin 455 7.6x10%
Whole blood 448 7.6x10%

In general, the activation energy of any physical/chemical process is the critical mini-
mum energy that must be possessed by the constituents involved for the process to take
place. Therefore the rate of the process will be proportional to the fraction of these con-
stituents which do possess the energy at least equal to the value of the activation energy.
This fraction fis deduced from the Maxwell-Boltzman energy distribution law [26]

S :exp(——g‘;‘j- (33)

Since the constant E, in equation (31) can be viewed as the mean activation energy
of the physical and chemical processes leading to the heat-induced cellular damage
(according to certain experimental criterion), the measured value of this constant, in
comparison with the values of activation energy of various well-known processes,

provides a foundation for speculations about the mechanisms of cellular injury [6],
[26]. HENRIQUEZ [26] divided the potential damage mechanisms into three categories:

(i) Thermal alterations in proteins. Proteins contribute to the maintenance of cell
life in various ways and undoubtedly even minor heat-induced alterations to these
molecules can lead to irreversible damage. Studies on the subject indicate that altera-
tions to proteins occurring in the temperature range of 0-100 °C at measurable rates
are not unusual. The activation energy of these processes are often well in excess of
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200 kJ/mole and can be strongly dependent on pH. For instance, for the heat denatu-
ration of egg albumin: E,= 553 kJ/mole at pH = 5; for the heat inactivation of inver-
tase E,= 461 kJ/mole at pH = 4 and E,= 218 kJ/mole at pH = 5.7; the hemoglobin: E,
=318 kJ/mole at pH = 5, see [6], [26] and [45]. Experimental studies of isolated rat
skeletal muscle reveal that at elevated temperature the rate of protein synthesis in-
creases slightly at first and then falls; simultaneously, the rate of protein breakdown
increases steadily [5]. Indeed, the protein balance is changed and loss of body mass
may occur even at the temperature range characteristic of fever [5].

(i1) Other possible alterations in metabolic processes. This class of effects in-
cludes the temperature influence on the kinetics of metabolic processes that do not
involve proteins. These are changes in the rates of diffusion, formation and degrada-
tion of chemical reactants, etc. The activation energy of these processes is usually of
the order of 40-80 kJ/mole. These effects are usually regarded of minor importance to
cellular thermal injury as compared to the previous group.

(iii) Nonprotein-induced alterations in the physical characteristics of cells. The
physical phenomena characteristic of protoplasm but not primarily affected by the ther-
mal alterations of proteins, e.g. diffusion of metabolites through an unaltered cell wall.

The model presented by equation (31) provides a definite connection between the
time-temperature history and damage accumulation. It can facilitate design of the hy-
perthermic treatment procedures allowing for, in principle, accurate damage prediction,
provided that the temperature field is known, the model constants are chosen appropri-
ately and the temperature range is suitable. However, it has several shortcomings. For
instance, it does not take into account the history of thermal insult, i.e. larger and smaller
thermal loads produce the same result, irrespective of their relative order.

The problem not accounted for by the model (31) is the observation that margin-
ally lethal or nonlethal temperatures lead to complete cell destruction, if they are pre-
ceded by short preheating at high temperature. Such cells become extremely sensi-
tized to further temperature treatment, which would not otherwise cause death, see
[24] for details. This phenomena can be viewed as the considerable lowering of the
activation energy E, by the preheating.

Another issue brought up by experimental investigations is that pH variations may
play a similar sensitizing role for some kind of cells, cf. [24], [45] and references
therein. It is probable that irradiation, preheating as well as low pH may cripple the
cell’s capacity to accumulate and/or repair sublethal heat damage which is in turn differ-
ent for different kinds of cells and may depend on mechanical loading [13]. Surpris-
ingly, the influence of the latter is usually neglected. While in vitro tests in thermal baths
and on isolated cells yield data usually specific to unloaded specimens, in the clinical in
vivo experiments the tissue is often loaded in unknown and uncontrollable manner. The
investigations of heat-induced shrinkage of collagenous tissue indicate that the increase
in the mechanical loading during heating delays the denaturation [13], [20]. Introducing
the characteristic time of damage process 7, one may write:
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T, :exp(a+ﬂP+L;1—),

where @, f and m are material coefficients. Scaling the time variable of experimental re-
sults (shrinkage measurements) obtained in different temperature-load regimes with T,
proved to be an effective way to reduce them to a single master-curve [13], [14], [20], [57].

From a practical point of view it is important to apply the damage measures con-
sidered above to the clinical cases, i.e. the hyperthermia protocol design. For this pur-
pose the idea of thermal dose was proposed by SAPARETO and DEWEY [45] and the
equivalent time at 43 °C was proposed as a “common denominator” for comparison of
thermal treatments. The value of this “break temperature” has been chosen arbitrarily.
For a simple case of comparing the two treatments conducted at different tempera-
tures the equivalent time #;3 is given by:

tyy =tR®T, (34)

where ¢ is the time of the treatment and T its temperature expressed in °C. The con-
stant R is assumed equal to 0.5 for 7> 43 °C and R = 0.25 for T < 43 °C. These as-
sumptions are justified experimentally [45].
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Fig. 9. Nomogram allowing a quick comparison of the isothermal treatments by means
of the equivalent time #43 at 43 °C. The equivalency of 30-min. treatment at 44 °C
and 15-min. treatment at 45 °C is also depicted, after [45]
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Criterion (34) is useful only in simple cases of isothermal treatments. For these
cases a simple nomogram can be drawn, see figure 9. Unfortunately, the thermal his-
tory during hyperthermic treatment is never isothermal. It usually consists of
a warming-up period, often exponentially approaching the treatment temperature, the
period of approximately constant temperature and the cool-down period. Conse-
quently criterion (34) needs to be extended:

t
ty = fR‘”'””dr . (34)
0

In clinical situation, the temperature profile 7(7) can be measured with a sufficient
accuracy to allow an approximation of the integral in equation (34).
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Fig. 10. Surviving fraction of Chinese hamster ovary cells at various temperatures plotted
as a function of equivalent minutes at 43 °C. The data for the lowest temperatures deviate
from a single line, as shown by the dashed lines, due to development of thermotolerance, after [45]

The concept of equivalent time at 43 °C allows the assessment of the potential threat
of the given treatment once the tissue damage is evaluated as a function of treatment
time in the experiments conducted at 43 °C. In figure 10, some experimental data are
depicted, cf. [45] and the references therein. The deviation of data points for the lowest
temperatures in figure 10 from the single line marks the development of thermotoler-



58 M. STANCZYK, J.J. TELEGA

ance. For these temperatures criterion (34) is inadequate as the constant R increases to
infinity as the temperature drops to the physiological values. The thermotolerance is
partially accounted for by means of the discontinuity of R at 43 °C, but this is by no
means satisfactory. The experimental results indicate that cells briefly exposed above
43 °C and then treated below this temperature show no such discontinuity — the effect of
thermotolerance is inhibited or delayed. This may be beneficial during hyperthermia
treatments since the cells acquire thermotolerance during the warm-up period and are
thus less susceptible to damage. Therefore, for the desired therapeutic effect to be at-
tained the treatment needs to be prolonged. The elimination of the unwanted thermotol-
erance by single high-temperature shock prior to the main treatment could be beneficial.
Other means can also be used, e.g. irradiation [45]. More advanced models than (34) are
needed to account correctly for phenomenon of thermotolerance.

The investigations of the temperature-induced cell damage in the range of small
temperature elevation is important, since long-lasting, small temperature elevations
exist in the case of joint articulation due to frictional heating, see Part II of our paper.
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