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The bone tissue remodelling is a relatively slow process. In physiologically “normal” conditions, it tends to-
wards the state of remodelling equilibrium. In the state of final remodelling equilibrium, the strain energy reaches
its minimum. In the life of each human being, the bone tissue passes through the repeating limit cycles of its
development, functioning and destruction. The paper presented is aimed at the biomechanochemical processes
within one limit cycle of bone remodelling using the stoichiometric equations and kinetic equations. Each limit
cycle of the bone tissue remodelling (in its assumed volume element) consists of several stages, in which the
biochemical reactions are proceeding in a highly intensive way, and of several periods in which the tissue is in
weakly steady states (i.e., the biochemical reactions are very slow or they almost do not take place). Generally,
throughout the life of a human, a bone tissue is several times in the principal weakly steady state, i.e., in such a
state in which the long-term remodelling equilibrium is reached. This period lasts for several years (roughly for
6-8 years) in the life of an adult human in his/her productive age, while in the life of a child this period is shorter.
Figuratively speaking, the stages of the bone tissue remodelling (during one limit cycle) can be compared to the
tissue “childhood and maturation” (i.e., II stage of remodelling — apposition of the tissue), and “aging—demise”
(I stage of remodelling — resorption). One limit cycle of the bone tissue life (out of the series of the subsequent
periodic limit cycles) that is characterized by the bone tissue development, functioning and destruction (in the
unit volume element) can be synoptically, and in the real time, described by four stages. The limit cycle is a close
trajectory of solution of kinetic equations of bone remodelling. The bone tissue (in its unit volume element)
passes through the repeating harmonic limit cycles (i.e., the stable periodic processes) of its development and
destruction.
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1. Introduction

This paper is aimed at the bone remodelling processes during the limit cycle in the
physiologically “normal” conditions, connecting the biochemical processes with the
biomechanical effects. The limit cycle is defined biochemically and biothermome-
chanically by both the stoichiometric and kinetic equations. Limit cycle can be also
defined from the mathematical point of view like a close trajectory of solutions of
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bone remodelling kinetic equations, or from the biological point of view like proc-
esses of tissue apposition and tissue resorption.

In connection with the well known data concerning of bone remodelling processes
that are given by stoichiometric equations [10], it is necessary to emphasize that the
figuratively expressed cycle of “childhood — maturity — demise” is assumed within the
scope of the bone tissue volume element. The volume element will be defined as
a bone tissue cube whose edge is approximately 0.2—-0.3 mm long.

The stage of the tissue “maturity” (i.e., the long-term state of the remodelling
equilibrium that normally lasts for a few years) can be shorter either as a consequence
of biomechanical effects (for example, the change in the dominant directions of prin-
cipal strains and principal stresses resulting from exceptional and long-term changes
in the skeleton loading) or as a consequence of biochemical effects (caused by meta-
bolic disorders). Provided that this stage is not shortened, the harmonic (periodic)
genetic initiations “start” the stage of resorption in the bone tissue volume element
assumed. The genetic code initiates incidentally the resorption of the skeleton system
(in physiologically “normal” conditions). According to Parfitt [5], the resorption is
initiated approximately every 10 seconds, in the incidentally distributed places, de-
pending on an individual’s age, sex, state of metabolism, bone tissue type, bone tissue
character and its properties. The genetic factor maintains the skeleton system in its
pre-determined functions. Thus, genetic factors also fulfil the function of controlling
the “longevity” of the cycle, i.e., figuratively speaking, the function of controlling the
“childhood — maturity — demise” of bone tissue.

Provided that in physiologically normal conditions the bone tissue (in its volume
element) passes through several steady states (i.e., the states in which, considering the
biological aspect, the tissue is relatively “calm”, and the fundamental remodelling
processes have been almost stopped), it is necessary to identify the number of those
states and to find out when they are either stable or unstable and when the biochemi-
cal reactions of the tissue remodelling are intensive.

2. Steady states of the bone tissue

Within the time framework of one limit cycle, the bone tissue (in its volume ele-
ment) passes through the stages of intensive biochemical reactions and through the
periods of weakly steady states. The longest stable weakly steady state is the state
after the osteoid mineralization. In this state, bone tissue can fulfil its basic functions,
e.g. a load-bearing function of a skeleton, maintaining its geometrical stability for
a long time (several years). The principal weakly steady state (PWSS) is the stable
state of the bone tissue in which the long-term remodelling equilibrium is reached.
Each weakly steady state is characterized by the occurrence of failures in the ideal
(theoretical) steady state. The deviations from this state directly depend on the
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changes in stresses (or on the changes in strains) and on the volume changes in molar
mixtures in the volume element of the bone tissue assumed (see hereinafter).

The stability of each weakly steady state is, sooner or later, impaired by a consid-
erable failure (deviation, or a series of deviations) in (from) the ideal (theoretical)
steady state during which the bone tissue system is becoming unstable, and the bio-
chemical reactions in the tissue are initiated (for example, the processes of the bone
tissue resorption as expressed by the second stoichiometric equation, or the processes
of the osteoid formation as expressed by the fourth stoichiometric equation, etc.).
After a certain time, these biochemical reactions decelerate and, subsequently, they
stop proceeding intensively. The tissue (in the volume element assumed) reaches the
new weakly steady state.

Depending on biomechanical-chemical conditions, the living tissue can always
reach only some of the eight steady states. Nature shows the tendency to reach such a
steady state which is pre-determined by biomechanical and biochemical effects (i.e.,
the effects of the genetic or metabolic origin).

In order to describe the bone tissue behaviour in the steady states and in their
proximity, the stoichiometric equations of the bone tissue remodelling and the kinetic
equations of the remodelling must be applied. The fundamental stoichiometric equa-
tions expressing the biochemical processes of the bone tissue remodelling were
defined by Petrtyl and DaneSova ([6], [10]). These equations can be briefly described
as follows:

e the first stoichiometric equation defines the process of the osteoclast formation
by merging with the mononuclear cells,

e the second stoichiometric equation indicates the osteoclast resorption activity,

e the third stoichiometric equation defines the resorption activity of the mononu-
clear cells and the development of substances initiating the osteoblast activity,

e the fourth stoichiometric equation defines the osteoid formation,

e the fifth stoichiometric equation describes the osteoid mineralization, i.e., for-
mation of new bone tissue.

In the stoichiometric equations, each molar mixture is characterized by the concentra-
tion which alters in time (in the course of biochemical reactions). The biochemical reaction
defined by the respective stoichiometric equation proceeds always at a certain rate. The
rates of biochemical reactions and their initiation primarily depend on biomechanical
effects [6], [10]. These rates are also dependent on the concentrations of chemical
substances which are responsible for the genetic control of limit cycles of the bone
tissue remodelling. The rates can be also influenced by failures in metabolic system
(for example, during the initiation and the intensity of spreading osteoporosis, osteo-
petrosis, and other skeleton disorders).

The kinetics of the bone tissue remodelling was described in detail [10] by five
above-mentioned kinetic equations (2). These kinetic equations were defined on the
basis of five fundamental stoichiometric equations. The differential equations of the
kinetics of the bone tissue remodelling make up the basis for determining the amount
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and character of the steady states, or the weakly steady states. In spite of the fact that
the steady states (considering merely the thermodynamic aspect) are characterized by
the termination of chemical processes, the conditions in the living systems are differ-
ent. Complete stagnation of the biochemical reactions would result in the “dying” of
the tissue. The weakly steady state is characterized by deviations from the (ideal)
steady state, or, in other words, by failures (fluctuations) in the steady state. Hence, in
order to define the steady states and to check their number, we must set out the condi-
tion for determining the termination of chemical reactions. The termination of
biochemical reactions (in the volume element assumed) takes place under the follow-
ing circumstances:

e the temporal change in the concentration of the molar mixture of the osteoclasts
is zero, i.e., dns/dt =0,

e the temporal change in the concentration of the molar mixture of residual sub-
strate (refuse) after the initiation of osteoclasts that have built up due to the
degradation of organic and inorganic components of an “old” bone tissue is zero, i.e.,
dne/dt =0,

e the temporal change in the concentration of the molar mixture of the osteoblasts
(initiating the osteoid formation) is zero, i.e., dns/dt = 0,

e the temporal change in the concentration of the molar mixture of the osteoid
(non-mineralized matrix of the tissue colagen) is zero, i.e., dno/dt = 0,

e the temporal change in the concentration of the molar mixture of the mineral-
ized matrix (i.e., the new tissue) is zero, i.e., dns/dt = 0.

Provided that the above-given five conditions are fulfilled, the (theoretical) steady
state is defined. If we insert the equations representing these conditions into a non-
linear system of differential equations of the remodelling kinetics, we will obtain
anon-linear system of algebraic equations for the unknown concentrations of the
components investigated (molar mixtures) of the tissue remodelling. Their solution
will lead to eight steady states [10] that can be characterized by the definite concentrations
T3e, Née, N7e, Ni0es Nige, O DY the concentration vector ne = (Hae, Mee, Ne, Mice, Nide)-

In the remodelling processes, however, each of the theoretically defined (ideal) steady
states is not reached in the course of a cycle. A real number of the steady states reached is
smaller and results from the qualitative analysis of the bone tissue biosystem behaviour (in
the assumed volume element of the tissue) in the proximity to the steady states.

3. Behaviour of bone tissue in the proximity to the weakly steady
states and the assessment of their stability

Provided that the behaviour of bone tissue biosystem in the conditions of the
steady state and its proximity is to be exactly described, the general bone tissue be-
haviour has to be identified and exactly expressed, which means that the biomecha-
nochemical processes proceeding in the tissue must be characterized. The description
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of the general behaviour of bone tissue is based on the stoichiometric equations of its
remodelling and on the kinetic equations (2).

However, the system of non-linear differential equations, which allows us to de-
fine the kinetics of the tissue remodelling, does not make it possible to find an exact
analytical solution. This means that it is not possible to determine the unknown con-
centrations n; (for i = 1, ..., 14) of molar mixtures in a given time ¢, for example, njo
(i.e., the concentration of the osteoid molar mixture in the unit volume element of the
tissue), ny4 (i.e., the concentration of the molar mixture of the mineralized — newly
formed — bone tissue in the same element), etc. Approximate numerical methods of
the solution of this system of differential equations (such as the Runge-Kutta method
or Euler’s method) do not give any opportunity to assess accurately the given issue.
Therefore it is necessary to apply the qualitative solution of the system of differential
equations, which means that the general behaviour of the living tissue system in the
proximity to steady states is to be investigated (or, taking into consideration the
mathematical aspect, the behaviour of the general solution of the system of non-linear
differential equations in the proximity to steady solutions is to be expressed).

Each steady state is characterized by certain concentrations of the molar mixtures
N3e, Nee, N7e, Nige, and ny4e from which the concentrations of all remaining molar mix-
tures, i.e., e, Noe, Nae, Nse, Nge, Nites Nize, aNd 73, can be derived. Considering merely
the thermodynamic aspect, it is necessary to emphasize that in the ideal steady state,
all these concentrations are constant, some of them being even zero [10]. In such
a case, however, all biochemical reactions in the living biosystem would be termi-
nated. Subsequently, an interior environment would be made perfectly inactive
(figuratively speaking, the biosystem would be “dead”). In the biological system, un-
der physiologically normal circumstances, however, the deviations (fluctuations) from
(in) the steady state arise, and the bone tissue behaviour can be characterized as an
unbalanced stable system. The fluctuations are caused by the changes in stresses
(strains) of the tissue and by the changes in the concentrations of molar mixtures re-
sulting from biochemical processes.

Taking account of the fact that the bone tissue behaviour in the proximity to the
steady state is to be investigated, the minor deviation

é(ta )') = (530’ }v)’ éﬁ(ty A)’ 570’ /1)’ élO(ts )“)’ 5140’ A’)) (1)

will be derived from the steady state. It is the function of the time ¢ and the parameter
A =Ap = (p — pe). The parameter values depend on the volume change in the bone tissue,
or on the changes in stresses (strains) in the volume element assumed. In the vector expres-
sion &(z, A) used for the deviation description, &(#, A) is the deviation of the concentration
of the osteoclast molar mixture from the ideal osteoclast concentration ns. in the steady
state; &(t, A) is the deviation of the concentration of the molar mixture of the refuse sub-
strates (resulting from the tissue resorption due to the osteoclast initiation) from ne; &(2, A)
is the deviation of the concentration of the osteoblast molar mixture from the ideal con-
centration ns. in the steady state; &o(z, A) is the deviation of the concentration of the
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osteoid molar mixtures from the ideal concentration nyq. in the steady state; and &i4(z, A) is
the deviation of the concentration of the new bone tissue molar mixtures (i.e., the mineral-
ized osteoid) in the steady state.

The deviation &(z, A) from the steady state is thus given by the following relation:
5,"'—' n; — Nje, for i= 3, 6, 7, 10, 14, (la)

ie.,
n;=nie+ ¢, (1b)

where n. = (N3¢, Nee, N7e, Nioes Nide) 1S the vector of molar mixture concentrations in the
steady state, and n; is the concentration of the i molar mixture (in the process of the tissue
remodelling) in the weakly steady state (for example, n; is the concentration of the osteo-
clast molar mixtures, n4is the concentration of the new bone tissue molar mixture, etc.).

The dependence of &(z, A) on A = Ap = p — p., is expressed by the rate constants k;,
ks, ks, and ks (see [6], [10]) which also depend on the coefficients of volume changes
in the molar mixtures D; (for example, Dy in the osteoid, D)4 in the mineralized oste-
oid, etc.) in the bone tissue unit volume.

The bone tissue behaviour at minor deviations & (see equations (1a) and (1b))
from the ideal steady state can be described as the behaviour of a stable system. Be-
cause the deviations & are actually the failures in the (ideal) steady state, this state
will be referred to as weakly steady state (WSS). After a certain time, a weakly steady
state becomes an unstable state. The biochemical reactions of the bone tissue remod-
elling as expressed by stoichiometric equations are initiated. After completion of the
biochemical processes we deal with a new steady state in the tissue.

The stability of weakly steady states will be determined by means of a general
method according to Lyapunov [1]-[3], [12]. If this method is applied, the system of
non-linear differential equations, which express the kinetics of the bone tissue remod-
elling [8]-[10], will be used in the following form:

ny =k (A —ny —ng)(Ay, —ny —ng —n; —nyy —ny)

=kyn3(Ay —ng —ng —nyg —ny),
ng =kyny(Ay —ng —ng —ny —ny) ,
n, =ks(A, —ny—ng—n,; —n,g—ny,)
X (A, —ng—ny —nyg —ny)—ky(Ag —nyg —nydng, 2
nyg = ky(Ag =g —ma)ny —ksmo(Ag —nyy) »

nyy =ksnyo(Ag—nyy)
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where A; (for j = 1, ..., 9) are constants (invariants) that equal the algebraic sum of the
molar mixture concentrations »n; (for i = 1, ..., 14). In order to avoid rewriting the sys-
tem of equations (2), we suggest to express them schematically in the following
arrangement, which is convenient for further application:

di
Ly a1 Oy L),

d
7":- = fo(ny (), n5(2), 1, (£), 1,0 (), 1,4 (), A),
C;L; = f1(ny(t),ng (1), n,(8),n,(2), 1,4 (), 7), 3)

dny,

_dt— = f1o(n3(0),m6 (), 17 (£), 1 (8), 14 (£), A),

d
Z;“ = fia(n3(0),ng (), 1 (1), 1, (), 1,4 (£), A).

The functions f;, fs, f7, f 10, fi4 are non-linear, being non-linear even in the proxim-
ity to the steady state. Because this paper is aimed at examining the behaviour of the
system being primarily in the above-mentioned proximity to the steady state of the
bone tissue, Taylor’s expansion will be applied (for these functions in the proximity
to the given steady state), and merely linear terms will be considered.

Thus, for the concentrations n; (i = 3, 6, 7, 10, 14) of molar mixtures in the proc-
esses of the bone tissue remodelling (according to equations (1), (1a), according to
a system of kinetic equations (3), and according to Taylor’s expansion) we arrive at:

W A By Pt i) Y, i n )¢ )

dt dt j=3.6,7,10,14 on;

fori=3,6,7, 10, 14.
Also:

&
dr’ (4a)
fi(ne) =0.

d o . pa—
E[—(nle +§1) =

Relations (4a) show that temporal change in the concentrations »; of the molar mixtures

in the proximity to the steady states is given by the temporal change in deviation %ét‘— from
the ideal concentration ;. , for (i = 3, 6, 7, 10, 14) in the steady state.

If we insert relations (4) and (4a) into the system (3), the deviation &(t, A) , i.e.,
the failure in the steady state, will be expressed by the following system of linear dif-

ferential equations:
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ues w of the system (5) matrix, i.e., to the solution of the following equation:

(3

(3

The solution of this system of linear differential equations for the deviation &(z, 1)
makes it possible to assess the stability of the solution in the proximity to the given
steady state in the bone tissue.
Based on the theory of the solution of the system of linear differential equations,
the entire task of the system (5) solution can be reduced to determining the eigenval-

9f; s s ofs 9
ony | ong |, on, |, ony |, ony |,
o | _, U o o,
on, ong L on, : any, . on,, .
.ai aﬁ aﬁ af?_ af7 =0 (6)
ons | ong |, on, onyg |, ony |, )
Uu| Y| Y| M| L, o
onsy | ong | on, | ony |, ony |,
| ] W] | M,
ons | ong | on, | ony |, ony |,

If the system (5) matrix is indicated as A, then, according to (2) and (3), we have:
det (A — wE) = [kenyy, +ksnyo, + ][0+ kiny ]
x [-kyng, — ) [k gy, + kg, + o] [- kyns, —kyny, — ]

)

in which w are the eigenvalues of matrix A and E is the unit matrix.
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The equation can be expressed in a shortened form as:
det(A - wE) =0. (7a)

This equation is the characteristic equation of the system (5) matrix. Its roots are
as follows:

w, (A) =—kny,,
W, (l) = —k,ns,,
0 (}”) = —k;ns, — kin,,, (8)

W, (’1) = —kyny, —kyng,,

Ws (’1) = —ksnp, — ksnyg,.

The acquired roots (8) of the equation (7) are the eigenvalues of matrix A of
a given system of linear differential equations (5) for the deviation &(#, A) from the
steady state. It is necessary to emphasize that all acquired eigenvalues W, W,, W3, W4,
s are negative. This means that, from the mathematician’s viewpoint, the deviation
E(t, A) is the stable solution of the system of linear differential equations (5) assuming
the initial deviation °€(r, A) = °&, °&, °&;, °E10, °E14) from the steady state, according
to Lyapunov [1], [12].

Taking into account the biothermodynamic aspect, the tissue system is, in such a
case, in the weakly steady state [6], [10]. It is thus obvious that the stability is im-
paired merely due to certain “major” deviations. In other words, the bone tissue
system becomes unstable only at a certain magnitude of failure. Besides, for each
solution &(z, A), whose initial values are small enough (in the absolute value), we ar-
rive at:

}i_)mé,- =0 for i=3,6,7,10, 14 )
and thus the deviation &(z, A) is asymptotically stable.

Nevertheless, this state is merely a theory. It does not occur in a living system,
otherwise the biochemical processes would be terminated and, subsequently, the sys-
tem would cease to exist. Taking account of the above, it must be emphasized that
each of two solutions, i.e., &(, A) and E'(z, A), only slightly differs from each other,
provided that the initial conditions (i.e., the initial failures °£ and 08) are slightly dif-
ferent. It is obvious from this statement that (at approximately identical initial
failures), considering the biological aspect, the identical weakly steady state is always
established again, and the cycle is proceeding approximately in the same way as the
previous cycle. It is thus the limit cycle which is characterized by the periodicity of
the biomechanical-chemical processes, i.e., the trajectory of solution of kinetic equa-
tions (2) is the periodic function of time.
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The deviation &, A) is the function of the time t and the parameter A = Ap, therefore
the magnitude of this deviation is directly influenced by the magnitude of the parameter A,
i.e., by the magnitude of the volume changes in the respective molar mixtures, or by the
magnitude of the change in mechanical stress.

The above data prove that if the initial failures only slightly differ from each other,
each of two deviations from the steady state will also show a slight difference. Bio-
logically stable bone tissue system in a certain steady state is functioning in the
proximity to this state, particularly in the modes of merely minor deviations, in other
words, it is functioning in the modes of minor fluctuations. Provided that the major
changes in the magnitude of these deviations occur, the stable weakly steady state will
become unstable.

Once the eigenvalues of the matrix of the system of equations (5) were found out,
we were able to determine the general solution of this system of linear differential
equations for the deviations (¢, A) from the theoretical steady state.

The general solution is the linear combination of the fundamental systems of solu-
tions. The general solution of the system (5) can be expressed in a shortened form as:

63 (l, },) = C1_3C_k'nz°" e C2'3C-k2"58t ,
56 (l, /1) = Cl,ﬁe-kmzut + C2,6e-—k2n50[ )

57 (t, A) - Cl.7e_ki"20t + C2'7e—k2"5c’ + C3,7e(—k3"5c—k3"2e)’ + C4‘7e('k4"7c"k4"9c)” (10)

_ —knyt —ky.ns,.t (—kans,—kyny )t
Eio(t,A) = C o™ + Cp e 2" + Cy g6 e

(kgmye=kang (~ksmioe—ksmae )t
+Cy € +Cs 108 ;

—k hs,. e
I SPFCRLE L +C3,x4e( sk

—kynqg.—kyng, It —k ~k !
+C4,14°( M7e 4”)c) +C5,14e( sMoc s”nzc) ,

where the coefficients C; forj =1, 2, 3,4, 5and i = 3, 6, 7, 10, 14 characterize the
initial conditions °€(A) = ("&(A), %E(A), “E(A), *Eio(A), °Eu(A)) which are the initial
failures (deviations) in (from) the steady state.

Expressions (10) show that the magnitude of the deviation &(z, A), i.e., the devia-
tion from an ideal value of the concentration ns. of the osteoclast molar mixture in the
weakly steady state, and also the magnitude of deviation &z, A), i.e., the deviation
from an ideal value of the concentration 7. of the molar mixture of the residual sub-
strates of the osteoclast resorption of the old bone tissue in the weakly steady state,
are influenced by the processes expressed by the first and second stoichiometric
equations. Deviation &(z, A), i.e., the deviation from an ideal value of the osteoblast
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concentration ns. in the weakly steady state, is substantially dependent on the bio-
chemical processes expressed by the first, the second, the third and the fourth
stoichiometric equations.

We have investigated the solution of the system of differential equations (2) in the
proximity to the steady state that is characterized by the concentration vector n.(A)
= (13e(A), nee(A), n7.(A), nioe(A), ni4e(A)) of the bone tissue molar mixtures for a given
parameter A = Ap = p - p., i.e., for a given change of stress in the bone tissue volume
element under investigation.

Each weakly steady state of the bone tissue system is impaired after a certain time,
which means that its stability is destroyed. The initiation of biochemical processes
(characterized by the respective stoichiometric equation) in the tissue is very intensive
and subsequently the weakly steady state of bone tissue system changes in another
weakly steady state. The conditions enabling the change in the stability of the weakly
steady state have not been defined yet. That is the reason why the dependence of the
steady solution n. on the changes in parameter A = Ap = p — p. must be analyzed. The
changes in the parameter A are caused by mechanical and chemical effects. The me-
chanical effects include changes of stress in the bone tissue. The primary chemical
effects result from the genetic control of the limit cycle of the bone tissue remodelling
or are caused by metabolic disorders. The secondary chemical effects are the conse-
quence of the primary biomechanical effects.

4. Bifurcation points and non-stability of the weakly steady state

Up to now, we have been dealt with the weakly steady states for a given parameter
A, 1. e., for a given change of stress in the bone tissue. This means that the general
solution n(z, A) = (n3(t, A), ne(t, A), na(t, A), no(t, A), na(t, A)) of equations (2) in the
proximity to the stationary solution ne(A) = (n3e(A), nee(A), n7e(A), nie(4), ni4e(A)) for
a given parameter A has been investigated. Now, our attention will be focused on the
behaviour of the stationary solution of a given system of differential equations (2),
depending on the changes in the parameter A, i.e., on the changes in stress (because
A= Ap =p - p., where p. is the stress in the ideal (theoretical) steady state, and p is
the actual stress in the volume element of the tissue under investigation, for example,
in a given time during walking or during other loading of the skeleton system). The
attention is to be focused on such values of parameter A that destroy the stability of
the weakly steady state. These values are called bifurcation values.

If the parameter A is changed, i.e., if the stress in the assumed volume element of
the bone tissue is changed (due to the changes in skeleton loading), the stability of the
steady state can be changed for a certain value of the parameter A (in terms of mathe-
matics, the stability of the stationary solution can be changed). The change in the
stability of the steady state occurs in bifurcation points. The bifurcation point is the
exactly defined point in the solution diagram at which the bone tissue system becomes
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unstable. In other words, the failures (that are characterized, for example, by the prin-
cipal change in mechanical stress) reach, in this case, such values that the weakly
steady state becomes unstable.

At the bifurcation points, in which one solution changes into another solution, the
branching of the solution occurs. The solutions at these points are ambiguous. There
is a change in stability of the weakly steady state at the bifurcation points. These
(“dubious”) points are determined by such a value of parameter A (i.e., the bifurcation
value of the parameter A) that makes obtaining the conditions for the theorem of the
implicitly defined function impossible. Taking the above into account, it is necessary
to emphasize that only in the case of a certain change in the parameter A (i.e., in
reaching the bifurcation value of parameter A), the stability of the weakly steady state
of the bone tissue is changed. Within the limit cycle of bone remodelling (in physio-
logically natural conditions) the knots represent the principal types of bifurcation
points (@A) <0, i.e., negative).

The bifurcation condition has the following form:

det J (n,,A)=0 (11)
or

det {%—(ne,,l)}w (11a)
on .

J

fori,j=3,6,7, 10, 14.
After specifying (11a), we obtain the bifurcation condition (11b) in the following form:

() @) i) asl) ()

on, ong on, | ony, ony,

ofs@)  of@) @A) o) ()

ony | Omg | Ony | Omg | Omy |
21 1% /1Y) 2105 B 105 (11b)
on, dng dn; drnyg Onyg .
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fo@) @) @) @) 9fi()

ony | ong | ony; | Omyg | dny
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ony | ong | ony |, Omg | Omy |
Simultaneously

detJ(ne ’/1) = kinyekonscks (”Se + 1y )k4k5 (n9e + e ) (“ Nyze — Nyge ) (12)
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Accordingly, the equation for determining the bifurcation values of the parameter
A takes the form:

kikyksk ksnsens, (nSe + 1y, )("9e +n,, )(“ Nyze = Mige ) =0, (13)

where
k, =k, Klee—n.(p—pc),

k3 = szSCKdeKke*(ﬂs*‘ﬂﬁn:)(P-Pc)’

ke = kKo, Ky o010 0re) (14)

ks =k, KSCC—"S("—”E).

In the system of equations (14) k; (for i = 1, 2, 3, 4, 5) are the rate constants of the
bone tissue remodelling, 7; ( for j = 1, 3, 4, 5) are the volume changes of the respec-
tive molar mixtures, K, (for m = 1, 3, 4, 5) are the remodelling functions in the
steady state (see [10]).

The parameter A = Ap = p — p. in the above equations (14) occurs in the expo-
nents. The values of the bifurcation parameter A influence the reaching of the
bifurcation point and, subsequently, they also influence the state of non-stability dur-
ing which one of the fundamental biochemical reactions is proceeding (being
characterized by one of the five stoichiometric equations, see [10]).

Once the bifurcation values of the parameter A have been determined, the expo-
nential functions on the left-hand side of equation (13) will be expanded in the Taylor
series. The attention is to be focused merely on linear terms.

Then, linear approximation of equation (13) in the proximity to the steady state
has the following form:

kK Ka KooK, (L=mA) L= (s +7, +13 A (1= (05 + 14 2]
X [L=nsA)nsens, (s, + na. ) (g, + 1, ) (= 1ize = yg, ) =0. (15)
Equation (15) will be fulfilled by the parameter values:

/13=L, A ; A ! ,12=_1_, (16)

m 4—775'”74"'773, l_-775‘*'774, Ns

where:

1 — the coefficient of the osteoclast volume change (in a given volume element of
the bone tissue),

13 — the coefficient of the osteoblast volume change (in a given volume element of
the bone tissue),
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ns — the coefficient of the osteoid volume change (in a given volume element of
the bone tissue),

s — the coefficient of the volume change in a new mineralized bone tissue (in
a given volume element of bone).

These values are the bifurcation values of the parameter A. They can be reached in
the weakly steady state:

a) by primary chemical effects resulting from a genetic control of the limit cycles,

b) by primary chemical effects resulting from the failures in the biosystem me-
tabolism,

c¢) by primary mechanical (biomechanical) effects such as the change in stress
/strain in the investigated location of the bone tissue that impairs the state of remod-
elling equilibrium.

5. Conclusions

On the basis of the above fundamental principles of bone remodelling, the most
significant conclusions can be summarized as follows:

1. Generally, the bone tissue that is formed within a certain limit cycle (in the unit
volume element) and ceased to exist in the same cycle (in the same unit volume ele-
ment) passes through four weakly steady states:

e The first weakly steady state (I WSS) is reached after the formation of the oste-
oid, i.e., after completion of biochemical reaction represented by the fourth
stoichiometric equation. This period of the osteoid formation and the first weakly
steady state can be figuratively called the childhood of bone tissue.

® The second weakly steady state (I WSS). We deal with this state after the oste-
oid mineralization (figuratively speaking, after the period of the tissue “maturation”).
This steady state is called the principal weakly steady state, i.e., the state of remodel-
ling equilibrium (figuratively, the state of maturity).

® The third weakly steady state (Il WSS) is reached when the osteoclasts have
been produced in the process of merging with mononuclear cells and as a result of the
osteoclast resorption activity, i.e., after completion of biochemical processes repre-
sented by the first and the second stoichiometric equations (this period can be
figuratively called aging of the bone tissue).

e The fourth weakly steady state (IV WSS) arises after the resorption activity of
mononuclear cells represented by the third stoichiometric equation. The period of the
bone tissue resorption by mononuclear cells can be figuratively called the tissue de-
mise. The fourth weakly steady state is the period of transition to a new (subsequent)
limit cycle.

2. The bone tissue for most of its life is in the principal weakly steady state
(PWSS). Taking into consideration the biomechanical and biochemical aspects, in this



Principles of bone remodelling 89

period the bone tissue is in the state of remodelling equilibrium. The periods of other
weakly steady states are shorter.

3. The remodelling processes (as defined by stoichiometric equations and kinetic equa-
tions) proceed in an intensive way between the weakly steady states. In the second weakly
steady state (PWSS), the longest one, the principle of the bone remodelling equilibrium is
applied. The coincidence of the dominant direction of the structure of osteons (their longi-
tudinal axes) with the direction of the first principal axis of anisotropy and with the
directions of the dominant principal stress (or dominant principal strain) occurs in the
bone tissue [11]. The dominant principal stress is relatively the greatest stress that occurs
in the bone tissue during long-term dominant loading.

4. All weakly steady states (WSS and PWSS) in bone tissue can be characterized
by the deviations &(#, A) from the (ideal) steady state. The deviations &; are dependent
on the time ¢ and on the parameter A which is given both by the mechanical changes
of stress/strain and by the volume changes 7); (in the volume element of the tissue).
The oscillations of failures in the ideal steady state have merely a low amplitude.
They are extremely important for keeping the bone tissue alive. Provided that the
changes in the stress (i.e., Ap = A = const) in the bone tissue did not occur, all bio-
chemical processes would be terminated.

5. All weakly steady states (WSS) in the physiologically sound bone tissue are
stable for a certain period of time only. The magnitudes of the deviations & show
an enormous dependence on the changes in mechanical stress, or on the changes in the
concentrations of molar mixtures. At a certain bifurcation value of the parameter
A = Ap the stability of the steady state is destroyed (in terms of mathematics, the sta-
tionary solution is impaired), in other words, the branching of the solution occurs.
Subsequently, the biochemical reactions of the bone tissue remodelling are initiated in an
intensive way, and the tissue system is becoming unstable for a certain period of time.

6. The unstable system of the bone tissue, in which biochemical reactions ex-
pressed by the stoichiometric equations are proceeding, is subsequently stabilized
(after completion of the biochemical reactions) as a new weakly steady state (WSS).

7. The stability of the I WSS is destroyed at the bifurcation value of the parameter
Ay which is determined by the volume changes in osteoid 74 and by the volume
changes in mineralized osteoid 7s:

1
Ns +MN4

Then, biochemical reactions expressed by the fifth stoichiometric equation and
those defining formation of the mineralized tissue are initiated in an intensive way.
After the total mineralization of the bone tissue volume element, this tissue will be in
the principal weakly steady state (PWSS). This state persists for the longest time. The
stability of the PWSS is destroyed by reaching the value of the bifurcation pa-
rameter A;:
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1

Arz =
Ns

’

where 75 represents the volume changes in the new mineralized bone tissue.

At the bifurcation value of the parameter A,, the system of the bone tissue (in its as-
sumed volume element), which has been stable for several years, becomes unstable. The
period of the non-stability follows. It is described by biochemical processes of the osteo-
clast formation (by merging with the mononuclear cells, see the first stoichiometric
equation) and of the osteoclast resorption activity (see the second stoichiometric equa-
tion). Afterwards, the third stable weakly steady state (III WSS) follows which is
impaired by reaching the value of the bifurcation parameter A;:

where 7, represents the volume changes in the osteoclasts as expressed by the first
stoichiometric equation.

At the bifurcation value of the parameter A3, the third weakly steady state becomes
unstable. During the period of non-stability biochemical reactions expressed by the
third stoichiometric equation (that defines the resorption of the residues of the “old”
mineralized tissue by mononuclear cells) are proceeding. Then, the fourth stable
weakly steady state (IV WSS) follows which is impaired in a short, transitive period,
becomes unstable, being unstable at the value of the bifurcation parameter:

= ——

Ns +14 +15
where 713 is the coefficient of the osteoblast volume change in the bone tissue unit
volume element, 74 is for the coefficients of the osteoid volume change, and 7sis for
coefficients of the volume change in the mineralized bone tissue being formed (even
though the coefficients 14 and 75 are minor or even negligible).

8. The initiation of individual stages is determined by the values of the bifurcation
parameter A; when the stability of the respective weakly steady state (WSS or PWSS)
is destroyed. At that particular time, the biochemical reactions start to proceed inten-
sively.

9. During each limit cycle, in the bone tissue volume element being investigated,
the old (mineralized in the previous limit cycle) bone tissue is totally substituted for
anew one, i.e., for a mineralized bone tissue (in the subsequent cycle). The substitu-
tion of the old bone tissue (produced in a previous cycle) for a new one is genetically

and incidentally initiated approximately every 8-12 seconds in some parts of the
skeleton.
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