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Abstract:  

Purpose: Image-guided biopsy is essential for safe and precise procedures, our main aim was 

to develop a software-hardware platform for assisting and automating this task. 

Methods: This study presents a prototype hardware-software platform for biopsy assistance, 

featuring an optimization tool for preplanning and the MentorEye system for real-time needle 

navigation using a simple support setup. Evaluation was conducted on a custom skull 

phantom with brain tissue and cancerous lesions. The system optimizes needle paths while 

considering surrounding structures and provides intraoperative guidance. 

Results: The planning tool successfully generated viable trajectories for all lesions, typically 

aligning with the shortest insertion paths. The mean Target Registration Error between CT 

and optical navigation was 2.08 ± 0.43 mm. In seven simulations, all biopsies were 

successful, with a mean deviation of 2.15 ± 0.84 mm and an nRMSE of 3.7%. 

Conclusions: The accuracy of the surgery simulation was influenced by segmentation, 

registration procedure, possible brain shift between imaging and intraoperative position, 

navigation system errors, and manual errors by the operator. Experiment results confirmed 

good efficiency of developed tools for automatic planning and image-guided aiding biopsy. 

Keywords: Differential evolution; Largest Empty Sphere; Lesion; Needle; computer assisted 

biopsy; tracking system 

1. Introduction 

Recent literature reviews suggest a large number of studies in semi-autonomous and 

autonomous surgical procedures [20]. Automating medical procedures is a key aspect in the 

advent of medical staff shortages [40]. Biopsy is one of the key procedures in medical 

science, its purpose lies in reaching pathological targets within the body, while avoiding 

healthy tissues. The samples obtained this way can be used for diagnosis and treatment 

planning in many areas of medicine, such as oncology.  

Automatic path planning for biopsy is an important part of autonomous medical 

treatment systems. In this area, the path for the needle is computed automatically by an 

algorithm using medical scans with limited or no input from the clinician. The main 

advantage of automatic planning is increased efficiency of biopsy, which results in reduced 

complications risk. These methods are also a major support for inexperienced physicians and 

might serve as training systems. Nevertheless, the planned paths need to be minimally 

invasive and planning such paths requires specialized approaches. The problem of path 

planning is well known in robotics and currently many methods are available, with examples 

including graph-based approaches [21], through popular tree-based solutions often using 



 

 

triangular meshes [25], and into optimization [1, 5]. Employing these various techniques is 

also very common in biopsy planning [30] with various custom approaches presented, 

examples including: prospective stereotaxis combined with skull-mounted trajectory guides 

and rapid trajectory design [12], path planning for Baker’s cyst biopsy based on differential 

evolution [6], path generation with Lagrange multipliers and 3d vectors [32], 3D ultrasound-

guided system visualizing needle paths in real-time with planning optimal routes while 

avoiding blood vessels and ribs [2] and path planning [14] within a combined automated 

biopsy system, with comparisons to manual planning available in [17], as well as multiple 

specific applications for neurosurgery as noted in [19] and [36], including [3, 22, 34]. 

Nevertheless, with the complex and uncertain nature of path planning in biological structures 

the issue still remains open. These automated solutions are typically based either on a cost 

map, which is a modified representation of the medical scan or actual distances from critical 

structures. Regardless of the approach, these methods provide tools to numerically assess the 

paths and subsequently select the best one using some optimization or brute-force search.  

Automatic path planning has specific advantages with researchers reporting 

perpendicular entry, shorter trajectory lengths and lower risk compared to manual planning 

[17]. Computer aided biopsy also enables significantly shorter operative times, reduced blood 

loss, and improved patient outcomes compared to traditional surgical techniques, reducing 

the risk of postoperative complications. However, challenges still remain, such as 

compensating for respiratory movement in certain procedures. There are also not enough 

outcomes regarding practical application of automatic planning in clinical conditions [30], 

since the physician must be aware of anatomical variability, possible patient movements and 

necessary adaptation while procedure. 

Computer assisted biopsy procedures may also leverage the use of robotic arms to 

increase accuracy of needle placement precision according to designed scenarios on 

integrated imaging techniques (CT, ultrasound, MRI) [4, 24, 15]. The robotic arm reduces 

time of surgery, as the surgeon does not need to manipulate to reach the proposed position 

and trajectory line and help to reduce the radiation dose for the surgical team [4, 15]. These 

robotic image-guided systems often cooperate with optical tracking devices. The system 

described in the study of Treepong [33] provided a higher success rate of breast biopsy 

(equaled 80%). An important feature of robotic image-guided systems, present even in the 

early systems, is the ability to adjust the trajectory knowing the current 3d error [27].   

This error varies in biopsy depending on anatomical region, imaging modality, and 

system used, and can range from 2.1 mm to over 10 mm [7, 9, 11, 15, 24, 26, 29, 39]. 



 

 

Ultrasound and MRI-guided systems differ significantly in accuracy, and augmented reality 

has been proposed to improve ergonomics and planning. Despite its potential, AR still 

requires high-resolution, low-latency systems and precise calibration to match virtual data 

with the user’s spectroscopic perception [16]. 

While many solutions for automated biopsy are available, due to the uncertain and 

complex nature of the problem, the issue still remains open. Therefore, the aim of this study 

is to propose and validate a platform for automatic biopsy based on a hardware needle 

tracking system and computer software for path optimization. This study is based on and 

significantly extends previous works [16, 23] and [6]. In [16, 23] a hardware system named 

MentorEye was proposed. It is a complex computer assisted surgical system for planning and 

aiding biopsy, resection and reconstruction surgery mainly in the craniofacial area. The 

MentorEye system applies CT DICOM dataset and the user identifies the tumor and design 

tumor biopsy or resection with proper safety margins. In reconstructive surgery planning the 

tool also helps to design geometry of bioimplant to reconstruct post-resection bone loss. 

Subsequently the system can be applied intraoperatively in order to control the resection and 

reconstruction surgery under control of optical (Polaris Spectra) or electromagnetic (Aurora) 

tracking systems from Northern Digital Inc., Canada. The software provides point-pair and 

novel hybrid registration techniques [31]. MentorEye enables an ergonomic visualization 

with augmented reality goggles [16, 23] or typical external monitor visualization, applied in 

this study. In terms of the planning solution study [6] presents a cost-map based approach for 

Baker’s cyst. The approach defines the path planning through an objective function and 

solves the problem with metaheuristic optimization. The needle path is planned in two 

dimensions within the assumed insertion plane. The software is capable of providing viable 

needle insertion paths with customizability through its various parameters. 

In the current study, our main aim was to combine and extend both the hardware and the 

software part into one system and perform its initial verification using a 3D printed phantom. 

In order to do so, the MentorEye system was adapted to use a high resolution CT dataset for 

planning and aiding biopsy surgery. The planning procedure from [6] was significantly 

extended to a three-dimensional dataset and fitting a 3D sphere to the identified shape of 

identified lesion, which also resulted in a more complex optimization procedure capable of 

returning realistic needle insertion paths. The results showcased the viability of the system 

through successful execution of planned paths on the skull-brain phantom with 7 lesions.  

2. Materials and Methods 



 

 

This study presents a comprehensive hardware-software solution for simulating biopsy 

procedures. An example application presented in this article is brain biopsy. However, the 

developed tool is not limited to this domain. The “Materials and Methods” section was 

subdivided into two parts. First one focused on the proposed software for biopsy 

preplanning, while the second one described the hardware used to execute navigated biopsy 

based on the preplanned paths for the needle. The software subsection covered two main 

issues: image preprocessing, to obtain the collision map and targets, and path planning using 

the obtained map. The hardware subsection focused on calibrating the computer aided 

intraoperative system (calibration of surgical tools and registration procedure), performing 

biopsy using a simple support system under control of optical tracking system and with 

visualization on CT scan and description of analyzed quantitative results of simulations.  

2.1. Object of study 

As mentioned before, the system aids biopsy procedures. Therefore, in order to test it in 

realistic conditions a skull and brain phantom was 3D-printed. The skull phantom (see Figure 

1) contained 3D printed brain tissue and multiple simulated lesions. The brain part was 

created from synthetic material, and the lesions were filled with plasticine.  Lesions were 

inserted only in selected target planes to simplify the procedure and ensure that the phantom 

did not break. The phantom was scanned using a Waygate V|tome|x M300/180 scanner at a 

voltage of 250 kV and a tube current of 200 mA, resulting in 1398 layers of imaging data 

with specific parameters: pixel spacing of 0.1305 mm, a slice thickness of 0.13 mm, and a 

field of view of 234.93 mm.  

  At this stage, the verification of the system was performed in simplified conditions to 

ascertain whether the automatically planned biopsy target and path can be fulfilled under 

control of the tracking system after the registration procedure. The main focus was on the 

navigation accuracy and the possibility to actually execute the planned path with relation to 

the phantom. Possible material deformations caused by needle insertion were not investigated 

in this study. Therefore the approach to the lesions was opened, as seen in Figure 1c. While 

this simplified the procedure, it did take into account all other possible factors - discrepancies 

between the real position of the brain object inside the skull and location recorded on CT, 

segmentation errors while planning, inaccuracy of registration procedure, navigation system 

error and operator’s manual error. 



 

 

 

Figure 1. Skull and brain phantom with 7 tumor lesions in three different configurations: A – 

skull phantom, arrows indicate fiducials, B – brain, C – target plane with tumor lesions. 

2.2.1. Preprocessing medical image data.  

Preplanning needle biopsy is a complex problem, which revolves around computing the 

starting and target points for the needle so that the resulting path is minimally-invasive and 

safe. In this study it was addressed in a unique way, tailored to take advantage of native 

representations of medical image data, that is three-dimensional voxel arrays. The custom 

planning procedure was written in Python. 

2.2.2. Thresholding the voxel array to select the target point for biopsy.  

The procedure required a 3D DICOM dataset as an input and a target object for biopsy, 

without specifying the actual target point. This DICOM dataset was converted into a 3D 

integer array using PyDICOM [18]. Then, multilevel thresholding was performed. Its levels 

were selected manually to represent the bone, the gray matter and the target objects 

representing malicious tissue. These thresholded binary images were saved into separate 3D 

voxel arrays: binary_bone, binary_graymatter, binary_targets. In the next step, the 

binary_targets array underwent conditional labeling based on object volume using scikit-

image [37]. This resulted in a list of viable target objects within the image. Then, the actual 

biopsy target, selected by the user, was saved into its separate voxel array binary_target and 

removed from the original binary_targets array. 

2.2.3. Computing the cost map.  

In order to obtain the path, a representation of the collisive space was needed. The proposed 

method employed a grid based on the original CT image, which contained the cost of 

traveling through the voxel, which is frequently used in robotics. In order to do so, every 

tissue was assigned a weight, representing its importance. In this study, the highest weight 

was assigned to the lesions, as the brain phantom had multiple elements of that kind. With the 



 

 

weights set, the voxel values corresponding to the specific tissues were replaced with the 

weights, similarly to Trope [34] and Ciszkiewicz [6] to create an initial cost map costmap_ini 

by a weighted sum on the obtained binary images:  

(1)𝑐𝑜𝑠𝑡𝑚𝑎𝑝_𝑖𝑛𝑖[𝑥, 𝑦, 𝑧] = 𝑤𝑔𝑚 ∗ binary_graymatter[𝑥, 𝑦, 𝑧] + 𝑤𝑏 ∗ binary_bone[𝑥, 𝑦, 𝑧] + 𝑤𝑡 ∗

𝑏𝑖𝑛𝑎𝑟𝑦_𝑡𝑎𝑟𝑔𝑒𝑡𝑠[𝑥, 𝑦, 𝑧]  

where w_gm, w_b, and w_t were the weights assigned to grey matter, bone, and targets, 

respectively. Note that the cost map did not contain the actual target lesion. Its cost was 

reflected in the final objective function explained in the following sections. In the next step, 

the map was smoothed, to create additional safety regions around the most important tissues 

and  augmented with additional constraints on the surgical space using voxelized spheres with 

position and radius selected by the user: 

(2)𝑐𝑜𝑠𝑡𝑚𝑎𝑝_𝑓𝑖𝑛[𝑥, 𝑦, 𝑧] = 𝑐𝑜𝑠𝑡𝑚𝑎𝑝_𝑖𝑛𝑖[𝑥, 𝑦, 𝑧] + 𝑠 ∗ (gaussian_filter(costmap_ini[𝑥, 𝑦, 𝑧], 𝜎)) + ∑( 𝑤𝑠𝑖 ∗

𝑣𝑜𝑥𝑒𝑙𝑖𝑧𝑒_𝑠𝑝ℎ𝑒𝑟𝑒(𝑐𝑒𝑛𝑡𝑒𝑟, 𝑟𝑎𝑑𝑖𝑢𝑠))  

where: s – the scaling factor, σ - standard deviation for Gaussian kernel, voxelize_sphere – a 

function, which returned a 3D binary image of the same shape as costmap_fin containing a 

voxelized sphere with a specified center and radius, ones in the image represent points within 

the sphere, while zeroes reflect the background, w_si – the weights assigned to the spheres, 

representing the cost of traveling through the sphere. 

In this study, two additional spheres were used. The first one was inserted in the front of 

the face, covering the eyes, mouth, and the frontal part of the brain. It was meant to 

discourage the procedure from finding dangerous and unconventional paths for needle 

insertion. The second sphere was inserted on the bottom of the image and covered the neck 

and the lower parts of the brain to limit the access to the lower part of the brain, increasing the 

safety of the procedure.  

2.2.4. Estimating the target point  

In this study, the target point estimate for the biopsy was the center of the Largest Empty 

Sphere (LES), which can be fitted inside the target object. Although there are many ways to 

obtain the LES, this study takes advantage of the Exact Euclidean distance transform as 

implemented in Scipy [38].  

2.2.5. Path planning  

The computed cost map and the estimate of the target point form the input to the actual path 

planning procedure, which is formulated as an optimization problem. The main objective of 

path planning was to find a needle path, starting outside of the skull and ending close to the 

estimate of the target point with the lowest possible travel cost based on the costmap.  



 

 

The needle was assumed to be rigid. Therefore, its path was fully defined by its starting 

point and target point. The needle radius was assumed to be much higher than that of the 

typical surgical needle to account for uncertainty when the actual path executed. Given these 

points and the needle radius, the needle was voxelized into an array of the same shape as the 

costmap. The cost of the path was then simply a sum of the product of the two arrays: 

(3)path_cost = ∑( costmap_fin[𝑥, 𝑦, 𝑧] ∗ voxelize_needle(starting_point, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑝𝑜𝑖𝑛𝑡, 𝑟𝑎𝑑𝑖𝑢𝑠_𝑛𝑒𝑒𝑑𝑙𝑒)) 

where: path_cost – the numerical cost of the needle traveling through the path given by its 

starting_points and target_point under the assumed radius of the needle radius_needle, 

voxelize_needle – a function, which returned a 3D binary image of the same shape as 

costmap_fin containing a voxelized needle with the specified starting_point, target_point and 

radius_needle, ones in the image represent points within the needle’s representation, while 

zeroes reflect the background. 

2.2.7. Objective function  

The path_cost defined in the previous subsection formed the basis of the objective function, 

which was used to rate the needle paths within the optimization procedure. The final objective 

was a weighted sum of two subobjectives: the aforementioned path_cost and the distance 

from the actual target point to its estimate given by the center of the LES: 

(4)𝑓(𝑥) = 𝑤1 ∗ 𝑝𝑎𝑡ℎ_𝑐𝑜𝑠𝑡 + 𝑤2 ∗ 𝑑𝑖𝑠𝑡_𝑡𝑜_𝐿𝐸𝑆_𝑐𝑒𝑛𝑡𝑒𝑟,                        

where: f(x) - the objective function used to rate the path with x being the decision variable 

vector specifying the path, w1 and w2 - the weights signifying the importance of each 

subobjective,  dist_to_LES_center - the second subobjective, which featured nonlinear 

distance scaling heavily favouring the target points in the closest vicinity of the LES center, 

while heavily penalizing solutions outside of the LES, akin to Ciszkiewicz [6]. 

The vector of the decision variables x contained 5 variables in this case. This included, 

two angles θ and γ to represent the spatial orientation of the needle in the spherical coordinate 

system and three coordinates of the actual target point target_point: 

(5)𝑥 = [𝜃, 𝛾, 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑧𝑡𝑎𝑟𝑔𝑒𝑡]
𝑇
                         

where: θ, γ - the angles defining the orientation of the needle, x_target, y_target, z_target - the 

coordinates of the target point vector target_point. The angles were allowed to change in their 

full ranges, as the actual surgical space was constrained by the additional spheres, the target 

coordinates were limited to the bounding box of the target object from the binary_target 

image. 

2.2.8. Optimization algorithm  



 

 

In this study, the algorithm used to minimize the objective function f(x) and find the optimal, 

minimally-invasive needle path was a hybrid between Differential Evolution (DE) and 

Nedler-Mead (NM) approach [10]. DE is a modern representative of a large group of 

metaheuristic optimization algorithms known for their global convergence, while NM is a 

popular choice in refining solutions of global optimizers. When combined, they provide an 

efficient way to estimate the global minimum of the objective function. Both algorithms were 

sourced from a Python library Scipy [38], with the DE parameters set to maxiter = 100 and 

popsize = 25 and the rest remaining default for both DE and NM. 

2.3. Hardware navigation  

In the second part of the study, the optimized needle paths along with the imaging data 

were imported into the MentorEye system for image-guided assistance. The MentorEye 

system provided computer-aided navigation using the Polaris Spectra infrared optical 

navigation system from Northern Digital Inc. MentorEye was a system developed to support 

biopsy procedures within a software-hardware platform (Figure 2) [16, 23]. The software did 

not feature automatic path planning for the needle but enabled needle tracking in real-time 

based on the user-provided start and target points enabling manual biopsy planning.  

 

Within this study, the planning part of the system was extended to enable importing 

the automatically planned needle paths from the procedure described in the previous chapters. 

The resulting system guided the physician through the particular stages of intraoperative 

support according to automatically obtained needle paths. The user could observe real-time 

position of needle related to the three CT projections and in 3D view of skull phantom and the 

obtained start and target points. Additionally, there were three indicators presenting the 

deviations in x, y, and z coordinate and one indicator presenting the angle deviation of 

Figure 2. MentorEye system with biopsy support stand (A). Localization of titanium 

fiducials applied for registration procedure and control points (B). 



 

 

trajectory. In order to employ the system within the phantom experiment several steps were 

required. These included: calibration of tracked tools (pointer, biopsy needle), point-pair 

registration procedure and finally image-guided biopsy, described in detail in the subchapters. 

2.3.1. Navigation System Calibration 

Firstly, calibration files for instruments used during the simulation were selected, and 

a frame of reference was affixed to the phantom possibly close to the operation field. A 

pointer was pivoted to determine its actual tip offset. The biopsy needle was calibrated in 

order to obtain the coordinate system with an origin located on the needle tip and with a 

coordinate axis parallel to the long axis of the needle. Therefore the visualization of needle 

real-time direction is self-explaining.  

A point-pair registration procedure was executed utilizing titanium markers implanted 

in the phantom, with five matching points used to derive the registration matrix. Localization 

of fiducials - titanium markers is presented in Figure 1 and Figure 2. In order to achieve the 

registration matrix the corresponding pair of points were marked on the CT dataset and with a 

tracked pointer. The point-pair registration algorithm solved the registration matrix. Fiducial 

Registration Errors (for fiducials applied in calculations) and Target Registration Errors (for 

control points) were calculated. If the errors exceed 3 mm the procedure was repeated.    

2.3.2. Biopsy Procedure 

The biopsy simulation involved a simple support system designed to guide the biopsy needle 

along an optimized trajectory. The setup was built using an adjustable photo stand integrated 

with a square-profile beam, which was drilled on the opposite side (Figure 2). A 20G x 130 

mm needle was inserted through two selected holes in the profile. The biopsy procedure was 

performed with the skull cap and the upper slice of the phantom brain removed to eliminate 

the influence of simulated brain tissue stiffness. 

2.3.3. Assessing the results from the experiment 

In order to assess the quality of the obtained results, the following metrics were used: 

• visual assessment of whether the needle punctured the selected lesion during biopsy, 

• Fiducial Registration Error (FRE): is the distance error for the fiducial i as seen in 

CT and after the registration 

(8)   FREi =‖T (pNAV,i )-pCT,i ‖        

where:  

T - the registration matrix and the corresponding points,  

pCT, i,- homogeneous coordinate vector of the fiducial point i (where I ∈ <1, 5>) in CT,   



 

 

pNAV, i - homogeneous coordinate vector of the corresponding fiducial i point 

measured by navigation  were used to calculate T, 

• Target Registration Error (TRE): is the distance error of the target fiducial markers 

after the registration, 

(9)  TREi =‖T (pNAV, i) - pCT, i‖      

 where: 

T - the registration matrix and the points  

pCT,- homogeneous coordinate vector of the fiducial point i (where i ∈ <6, 9>) in CT,  

pNAV - homogeneous coordinate vector of the corresponding fiducial i point measured 

by navigation, were not used to calculate T, 

• linear and angular deviations between planned and performed trajectory of biopsy 

and nRMSE (normalized Root Mean Square Error) on the distance from the planned 

target point to the actual target point; normalized by the average length of the path. 

3. Results 

3.1. Path planning in Python 

The proposed automatic system for biopsy planning identified 14 lesions of suitable size 

through thresholding and object labeling. The targets were of irregular shape, which was 

reflected in the ratio of LES area to the target area averaging at 49.0 ± 8.2 % with radii of 3.1 

± 0.7 mm. The planning procedure optimized needle paths for all of them. These paths were 

presented in Figure 3. All of the obtained target points were within their corresponding LES. 

Most of the paths were mostly perpendicular to the skull surface, which highlighted the 

effectiveness of the procedure at finding the short, safe paths. 

3.2. Registration Accuracy 

Out of the 14 planned paths, 7 that were possible to reach within the prepared skull 

phantom were selected for further testing in real-world space. 



 

 

 

Figure 3. The needle paths obtained from the proposed path planning procedure as seen from 

three different perspectives and drawn on top of the collision map and the lesions/targets.  

Red and blue colors signify high and low cost of traveling through voxels respectively. 
 

3.3. Biopsy results 

The biopsy was performed on all of the seven selected lesions. Each stage of the 

procedure, including the contact point setup and the actual insertion of the biopsy needle, was 

closely monitored via the MentorEye system (Figure 4A). A visual inspection of the lesion for 

needle punctures was performed after biopsies. In seven out of seven lesions, the lesion was 

properly punctured allowing for safe biopsy, see Figure 4B. Table 2 contained summarized 

deviations between planned and achieved target positions and trajectories and result of visual 

inspection of the lesion (hit or not). In all cases the lesion was properly hit. The mean distance 

between target point and planned position equaled 2.15 ± 0.84 mm. 

3.3. Biopsy results 

The biopsy was performed on all of the seven selected lesions. Each stage of the 

procedure, including the contact point setup and the actual insertion of the biopsy needle, was 

closely monitored via the MentorEye system (Figure 4A). A visual inspection of the lesion for 

needle punctures was performed after biopsies. In seven out of seven lesions, the lesion was 

properly punctured allowing for safe biopsy, see Figure 4B. Table 1 contained summarized 

deviations between planned and achieved target positions and trajectories and result of visual 

inspection of the lesion (hit or not). In all cases the lesion was properly hit. The mean distance 

between target point and planned position equaled 2.15 ± 0.84 mm. 

In the first step, the accuracy of the navigation system was assessed with error metrics: FRE 

and TRE calculated for the markers. Their peak values were at 1.64 mm and 2.66 mm for 

FRE and TRE respectively with mean of only 1.01 ± 0.59 mm and 2.08 ± 0.43 mm. 



 

 

Table 1. Visual inspection result, deviations between planned and achieved positions and 

trajectories for seven lesions, where: insp. -  the result of the visual inspection of the incision, 

which could be either: hole - a small incision recognized after biopsy, trace - a larger incision 

was observed after the biopsy, when the planned trajectory angle relative to the tangent plane 

was close to zero, xdiff, ydiff, zdiff - deviation in x, y, z coordinates of target point regarded 

planned position, d - distance between target point and planned position,  α - angle between 

achieved and planned trajectory. 

 

α [deg] d [mm] zdiff 

[mm

] 

ydiff [mm] xdiff 

[mm] 

insp. Id 

1.56 3.15 -2.29 -1.26 -1.76 + (trace) 1 

2.68 2.21 2.19 -0.19 0.2 + (hole) 2 

0.31 1.26 -0.4 -1.03 0.61 + (hole) 3 

1.68 1.35 0.91 -0.5 -0.87 + (hole) 4 

1.11 2.12 0.82 1.35 -1.41 + (hole) 5 

1.17 1.58 1.43 -0.48 0.46 + (hole) 6 

1.67 3.37 -3.03 -1.36 -0.58 + (trace) 7 

1.45 ± 

0.72 

2.15 ± 

0.84 

Mean ± Standard Deviation   

 

Figure 4B illustrated the incisions resulting from the biopsy procedures, providing a 

visual representation of the needle penetrations in the simulated lesions. Based on the 

Figure 4. A sample biopsy procedure in MentorEye system for target  #5 as seen in Figure 1 

(A). Result of biopsy procedures (arrows indicate punctures in plasticine lesions) (B). 



 

 

obtained results the nRMSE calculated using the distance from the planned target point to the 

actual target point and normalized by the average length of the path equaled 3.7%. 

4. Discussion 

4.1. Software path planning 

As mentioned before, this study was based on imposing a voxelized needle 

representation onto a cost-map for the needle path planning. The approach was successful in 

providing minimally-invasive and safe paths under the assumed conditions for the assumed 

phantom of the skull and brain. This voxelized-needle approach is in contrast with some of 

the other studies in medical path planning [17] and [28], where the risk is assessed as the sum 

of the distances from vessels, or potentially other dangerous elements. While cost-maps or 

distance maps have been used for path planning, as seen in [3], the use of a voxelized 

cylindrical needle allowed for indirect inclusion of uncertainty. This uncertainty is reflected in 

the radius of the needle within the obtained path. While this approach is more numerically 

expensive than tracing a single path line, as seen in [3], it is also more robust to uncertainty. 

Our other contribution in this area is in employing Largest Empty Spheres for target 

point estimation, which then further optimized. The center of the LES in an object represents 

a point, for which the minimal distance to the object boundary is the highest amongst all of 

the points within the object. From a geometric point of view, it represents a point with the 

highest margin of error when executing a biopsy. This is in contrast to some of the available 

studies. In [17] and [28] this problem was addressed by using a risk minimization procedure, 

which transforms the target object into a structure similar to a cost-map or other approaches 

featuring voxel-based search for entry points [3]. All of these approaches are viable, as shown 

in their respective studies. Nevertheless, they also partially determine the procedure for the 

path planning. In the current study, the use of the LES allows for transforming the discrete 

search space defined by the voxels into a continuous one defined by the target point and the 

entry point, all while making no assumptions on the underlying CT data, which is only 

segmented with no need for the creation of specific meshes or other elements. This means that 

the search for the optimal path can be then executed by an optimization procedure in the 

continuous space, without tying the results to the resolution of the voxel image or the obtained 

meshes, which might be the case with other approaches [17] and [28]. Additionally, having 

the target to be inside the LES makes it possible to generalize the path more - in this case the 

path is specified by five variables, out of which two define the orientation of the needle and 

three are the actual target coordinates. This potentially allows for safer paths, as the software 



 

 

can work with more degrees of freedom - 5 - in contrast to 3 in some of the available studies 

[35] or number of presampled entry points [13, 22, 34] or vertices of a mesh [17, 28].  

4.2. The effectiveness of the hardware part and the entire system 

During testing, deviations in trajectory (angle) and target position (x, y, z coordinates 

and distance) were measured. However, the most important metric in the entire experimental 

setup was the visual inspection of the targets. In these terms, the proposed system had very 

good performance with needle reaching seven out of seven targets. This meant that the 

navigational part of the system was working as intended. The mean accuracy in our tests: 2.15 

± 0.84 mm was comparable to a previous study with CT guided biopsy [16] and CT and AR- 

guided osteotomy [23]. Regarding the mean angular deviations of 1.45 ± 0.72 degrees were 

much better than in [23]. The nRMSE of 3.7% target displacement is also a satisfactory result. 

Obtained results were comparable to those reported for robotic-assisted systems [7, 9, 24, 26, 

29, 39]. Probable reason for that was a high resolution of scan and applied titanium markers. 

The main source of error in the proposed approach was manual human error resulting from 

free-hand operation with a stand. Minimizing it would lower the inaccuracy of biopsy even 

more, which is important if we consider tissue stiffness instead of air traverse to lesion.    

As mentioned before, the study was carried out using a 3D printed skull-brain 

phantom. The use of phantoms was common in other related studies, such as [14] and [8]. 

This phantom served as the baseline for obtaining the CT used for path planning. It was also 

used during the experimental part to test the obtained paths with proper navigational support. 

It should be mentioned that the experimental part was carried out in simplified conditions 

with the skull opened and the target plane revealed. At this stage, the aim of the experiment 

was to assess the effectiveness of the system at navigating the surgeon to the very small target 

objects inside the brain, reflected by the small radii of all of the obtained LES. 

4.3. Limitations 

Although the system was proven effective in undertaken tests, some limitations should 

be acknowledged. Regarding the software, the needle path was planned without accounting 

for soft tissue displacement, it was mitigated by assuming a large radius for the voxelized 

needle and estimating the target as the center of the LES. Nevertheless, it could also be 

extended with physics in the future, or real-time path replanning. To assist the investigator in 

inserting the biopsy needle, we opted to use a regulated photo stand. However, we observed 

that the setup had limitations in controlling the direction of the tool axis. Additionally, 

potential collisions with the phantom required adjustments to the setup, making the procedure 

less ergonomic and still time-consuming.   



 

 

5. Conclusions 

The study presents an approach for automating and supporting biopsy. A series of tests  

was conducted on a 3d printed brain phantom to assess its efficiency. The experiments 

confirmed good efficiency of the approach tools for planning and aiding biopsy in both 

software planning and hardware execution. Future studies will investigate the integration of a 

robotic manipulator to enhance procedural efficiency.  
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