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ABSTRACT 

Purpose: This study aimed to develop feature extraction strategies for center of pressure (CoP) 

signals using adaptive genetic programming to characterize fall risk in older adults. Methods: 

The individual performance of CoP indices reported in the state of the art was optimized through 

adaptive genetic programming across mathematical domains, such as entropy, time-based 

(distance, area, hybrid measures), and frequency-based. The validity of the new CoP indices 

was tested using mean difference tests for groups with and without fall risk, measuring the 

correlation with existing measures, as well as through the performance of univariate and 

multiple logistic regressions, which were reported in terms of the macro-average F1-score, 

recall, accuracy, specificity, sensitivity, and Area Under the Curve (AUC).  Results: The newly 

generated genetic CoP indices outperformed state-of-the-art indices in fall risk identification. 

The genetic-frequency CoP index achieved the best performance in univariate logistic 

regression, with an AUC of 0.763 using five-fold cross-validation. Moreover, all genetic indices 

showed statistically significant differences between older adults with and without fall risk. 

Conclusion: These results suggest that the proposed methodology provides some simple 

calculation formulas that facilitate its future adoption in clinical settings and increase fall risk 

classification performance by up to 27.0%. 

KEYWORDS Adaptive Genetic Programming, fall risk assessment, center of pressure (CoP), 

older adults, feature extraction, signal processing 

Introduction 

As people age, various physical and functional changes progressively deteriorate their balance 

ability, leading to increased fall risk. Multiple consequences result when an older adult 

experiences a fall, including muscle injuries, dislocations, contusions, and bone fractures [39]. 

At the same time, there may be psychological consequences, such as loss of confidence, 

restriction of activities, and reduced physical functions and social interactions. Taken together, 

all these consequences result in financial costs [39], reduced quality of life, and may even lead 

to death [32].  

Annually, an estimated 2.4 million injuries serious enough to require medical attention are 

recorded, along with approximately 1.6 million fall-related deaths in older adults [16]. This 

phenomenon is recognized as a serious public health problem [39][16]. Furthermore, with the 

inversion of the population pyramid, it is expected that the number of fall events will continue 

to increase in the coming years [39]. 



 

 

A correct assessment of balance and fall risk enables health professionals to implement timely 

interventions, improving the performance of balance capacity and preventing falls as much as 

possible [22]. In this sense, different approaches have been developed to assess balance, among 

which force platforms have been considered the gold standard [14]. 

A force platform allows the characterization of balance from two time series that evaluate the 

displacement of the Center of Pressure (CoP) in the Anterior-Posterior (AP) and in the Medio-

Lateral direction (ML). According to Quijoux et al. [30] the greater the displacement of the CoP 

the lower the balance capacity, other studies [15][35] suggest the claim that the variability of 

the CoP is positively correlated with the ability to respond to external stimuli to avoid a fall. 

Different CoP indices have been proposed to improve the explainability of the CoP time series, 

which are mathematical formulas capable of characterizing balance [28][29].  

These CoP indices have been used to characterize balance and indirectly assess fall risk. 

However, their adoption by healthcare professionals has been limited, as their interpretation 

often requires the simultaneous use of more than 20 different indices [18][25][31]. This not 

only complicates the assessment and prioritization of relevant features but also requires a 

certain level of technical expertise. 

For the above reasons, in the field of artificial intelligence, CoP indices have traditionally been 

used as input features in classifiers to automatically identify older adults at risk of falls or 

balance disturbances, supporting healthcare professionals in making quantitative data-driven 

decisions [31]. However, the CoP indices that best describe fall risk show poor reliability [5][9]; 

furthermore, some of them do not show individual statistical significance to identify classes 

[31].  

In addition, studies suggest that current approaches to fall risk prediction may be biased toward 

overclassifying individuals as at risk [6][31], rather than providing balanced, generalizable 

predictions. This trend was echoed by Pennone et al. [25], who, after testing six classifiers on 

53 CoP indices and anthropometric data, found none could reliably distinguish at risk 

individuals, likely due to limitations in static CoP data. These findings suggest that the limited 

specificity and interpretability of current CoP indices may hinder effective classification and 

clinical utility. 

In this context, although it has been reported that CoP indices are capable of describing balance 

[31], uncertainty arises as to whether they can truly describe fall risk and if it is possible to 

enhance the performance of current methods. As mentioned above, attempting to characterize 



 

 

an event as sudden as a fall can be a challenging task. In addition, there is a limited amount of 

stabilometic data [33], which complicates maximizing the potential of deep learning algorithms 

[1][11][18]. A paradigm shift is needed in the way CoP information is extracted for fall risk 

identification [18]. For this reason, it is proposed to extract features from the stabilometric 

signals of the CoP that directly characterize the risk of falling using Genetic Programming (GP).  

GP is an evolutionary computation method that evolves potential solutions to generate optimal 

outcomes for complex problems, drawing inspiration from biological processes. While derived 

from Genetic Algorithms (GA), GP distinguishes itself by representing candidate solutions as 

binary tree structures, enabling the optimization and evolution of both programming code and 

mathematical expressions [2][36]. 

In this sense, it is possible to generate optimal solutions using binary trees that represent 

mathematical expressions [21]. GP has been reported to be especially useful for feature 

extraction in situations where the relationships between the problem variables are unknown, or 

when the underlying mathematical model is not well-defined or difficult to specify. Due to its 

ability to explore and adapt to the problem structure, GP can find acceptable and even optimal 

solutions in contexts where other optimization approaches may be less effective [7].  

In addition, to improve the convergence process, Adaptive Genetic Programming (AGP) 

dynamically adjusts mutation and crossover probabilities during algorithm execution. This 

adaptation is based on the optimization progress and the characteristics of the problem, allowing 

for more efficient exploration of the solution space [27]. Although GA are more widely used in 

the biomedical field [12][19][20], GP has proven to be useful in biomedical applications such 

as tuberculosis screening from raw X-ray images [4], predicting established cervical spine 

disease [38], and detection of confounding drug names [37].  

This study aimed to develop feature extraction strategies of CoP signals using APG to 

characterize older adult fall risk, intending to optimize the performance of the classification 

algorithms previously used and create formulas by mathematical domain to facilitate the 

interpretation of results without reducing performance in the identification of individuals with 

and without fall risk. 

Materials and Methods 

In this study, the AGP algorithm was employed to enhance the effectiveness CoP indices in 

identifying fall risk among older adults. Its process focuses on generating a new genetic CoP 



 

 

index by combining the optimal components from existing CoP indices within each 

mathematical domain. Figure 1 illustrates the primary workflow of the current proposed 

methodology. In subsection “Stabilogram signals”, the dataset used and the data balancing 

process are described. Then, in section “Original CoP indices”, the coding of the CoP indices 

is explained. Finally, in section “Genetic Programming”, the parameters of the adaptive genetic 

algorithm are detailed, and its logistic regression fall risk detection. 

 

Figure 1. Block diagram of the proposed approach  

Stabilogram signals 

This study utilized the 'A Public Data Set of Human Balance Evaluations' [34], which comprises 

both qualitative and quantitative balance assessments from 163 participants, including 116 

females and 47 males. The dataset includes information such as fall history, Short Falls Efficacy 

Scale International (Short FES-I) scores, and time series data of stabilograms in both 

anteroposterior (𝐶𝑜𝑃𝑦) and medio lateral (𝐶𝑜𝑃𝑥) directions, for equilibrium assessment repeated 

on 3 occasions using a laboratory-grade force platform (OPT400600-1000; AMTI, Watertown, 

MA, USA). 

Exclusively, the time series data of the CoP for older adults (aged 60 years or older) were 

utilized under the eyes-open condition and on a firm surface. This decision was made to 

safeguard the physical well-being of older adults, avoiding potentially challenging maneuvers 

such as closing their eyes or standing on unstable surfaces, which could compromise their safety 

during the study [18].  

The fall risk variable was defined as participants aged 60 or older who had experienced at least 

one fall in the past 12 months or scored above 14 on the Short FES-I clinical scale [18][24][31]. 

Those not classified as fall risk were assigned to the non-fall risk class.  Only the first and 

second sets of repeated tests were selected for the fall risk class, while the non-fall risk class 

registry was selected for all 3 repeated tests to balance the dataset concerning the number of 

registers per class [18]. 

Original CoP indices 

           

       

          

       

          

     

           

       

                        

        

              

                         

                    

                     

                       

                        

          

      

          



 

 

The existing mathematical expressions of the CoP indices [28][29] were encoded using binary 

trees. Operators include arithmetic, relational, statistical aggregates, and NumPy functions, 

while operands such as signals and numbers are described in Table A1 in the APPENDIX A1. 

In addition, chromosomes were cataloged into distance, area, hybrid, frequency, and entropy-

based types (see Table A2 in APPENDIX A1). Figure 2 shows the coding for the 

Mean distance-AP index, given by the following expression: 

MDISTAP = 
AP[n]

𝑁
 = 

∑ (CoP𝑦[𝑛]−mean(CoP𝑦))
𝑁
𝑛=0

𝑁
 

 

Figure 2. Coding of the MDISTAP index 

Genetic Programming 

Six strategies were developed to generate the initial population. The first five focused on 

optimizing the CoP indices for each mathematical domain listed in Table A1 in APPENDIX A1. 

In the first five experiments to reduce the search space, and take advantage of existing features, 

the initial population consisted of 100 chromosomes: n chromosomes represented the CoP 

indices known in the state of the art for each respective mathematical domain, while the 

remaining 100 − 𝑛 individuals were randomly generated. Similarly, in the sixth experiment, all 

45 CoP indices and 55 random indicators were included as part of the initial population. For all 

experiments, 1,000 generations were used as the stopping criterion. The fitness function focuses 

on maximizing the macro-average F1-score. We proposed to evaluate the macro-average F1-

score of a logistic regression model to identify fall risk, validating the performance by a 5-fold 

cross-validation method to avoid over-fitting. 

The genetic operators of elitism (20%), selection by size 2 tournament, and adaptive crossover 

and single-point mutation were used. The cataclysm operator was used to avoid premature 

convergence, which consisted of eliminating the entire current population at generation 750 

except for the best chromosome, and then adding randomly without replacement individuals 



 

 

corresponding to the existing CoP indices according to the mathematical domain to be 

optimized. 

The probability of adaptive crossover (𝑝(𝑐)) for each chromosome is determined based on the 

fitness values of the current population average (𝑓avg) and the second parent (𝑓selcross2), 

following these rules [27]:  

𝑝(𝑐) =

{
 
 

 
 𝑘1cross (

𝑓selcross2 − 𝑓avg

𝑓max − 𝑓avg
) + 𝑘1crossbias ,  𝑓selcross2 ≥ 𝑓avg

𝑘2cross (
𝑓selcross − 𝑓min
𝑓avg − 𝑓min

) + 𝑘2crossbias ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

where 𝑘1cross = 0.5, 𝑘2cross  =  0.2, and 𝑘2crossbias =  0.3. 

Similarly, the adaptive probability of mutation (𝑝(𝑚)) for each chromosome will be given by 

the fitness value of the chromosome currently selected (𝑓selmu) and (𝑓avg), following these rules 

[27]: 

𝑝(𝑚) =

{
 
 

 
 𝑘1mu (

𝑓max − 𝑓selmu
𝑓max − 𝑓avg

) + 𝑘1mubias ,  𝑓selmu ≥ 𝑓avg

𝑘2mu (
𝑓avg − 𝑓selmu

𝑓avg − 𝑓min
) + 𝑘2mubias ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

where 𝑘1mu  = 0.01, 𝑘2mu = 0.09, 𝑘1mubias = 0.005, and 𝑘2mubias = 0.01. 

A descriptive analysis of the new CoP indices was conducted, reporting means and standard 

deviations for the entire sample, as well as for the fall risk and non-fall risk groups. The 

normality of the new genetic CoP indices was assessed using the Kolmogorov-Smirnov (KS) 

tests with Lilliefors correction. Fall risk condition group Mean Difference (MD) comparisons 

were made using a T-test for parametric variables, and a Mann-Whitney U test for 

nonparametric variables. All statistical tests were performed with a significance level of α =

 0.05 using IBM SPSS Statistics (version 26.0, Armonk, NY, USA). 

The predictive validity of new genetic CoP indices for fall risk detection was assessed by a 

logistic regression model was individually fitted for each of the genetic CoP indices. 

Additionally, a multivariate logistic regression model will be trained using all genetic CoP 

indices as input features. Both modeling approaches will be evaluated using 5-fold cross-

validation, and their performance will be reported in terms of macro-average F1-score, recall, 

accuracy, specificity, sensitivity, and AUC, using Python (version 3.11). Finally, the evaluation 

coefficient between the genetic indices with respect to those described in the state of the art and 



 

 

the evaluations obtained in the Short FES-I and Balance Assessment Systems Test (BEST) 

instruments were measured. 

Results 

The study included data from 76 older adults, with an age mean of 71.31 ± 6.47 years. The 

majority of participants were female (78.94%). In addition, 38.15% of the individuals were 

reported to be at fall risk condition. The repeated assessments of the subjects represented 181 

stabilometric evaluations, distributed in 94 records corresponding to the non-fall risk category 

and 87 to the fall-risk condition. 

Manual encoding of 45 CoP indices (see Table A1 in APENDIX A1) was implemented using 

binary tree structures. These indices were distributed across the time domain: 15 distance, 3 

area, and 6 hybrid indices in the temporal domain, 18 indices in the frequency domain, and 3 

entropy-based indices were included. 

In AGP experiment 1, CoP indices were optimized in the distance temporal domain, leading to 

the construction of the 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 index using the following formula: 

∑

{
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(

  
 

(

 
 
((((((𝑐𝑢𝑚𝑠𝑢𝑚(CoPy[n]%α)

2
% 86.10)%− 𝛽)% α) + 𝛾)% α)% 𝛿 )%− 𝛽

)

 
 
% 𝛾 − α

)

  
 
% 𝛿 

]
 
 
 
 
2

}
 
 

 
 
2

}
 
 

 
 

𝑁

𝑛=1

 

Where α = 12.27, 𝛽 = 91.84, 𝛾 = 89.13, and  𝛿 = 4.62.  

At the deepest node of the 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 index, a nonlinear transformation is applied, 

where the 𝐶𝑜𝑃𝑦 modulus is calculated with a decimal divisor of 12.27. This operation 

selectively amplifies negative values, corresponding to body displacements in the posterior 

direction. Additionally, this transformation is accumulated over time by 𝑐𝑢𝑚𝑠𝑢𝑚, squared, and 

weighted through a series of additional operators including multiple modulus with different 

constants, additions and subtractions, before final aggregation is performed. 

In AGP experiment 2, the 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑎𝑟𝑒𝑎 index was generated, resulting in the following 

formula: 

 ∑

(

 
 
47.39 ∗ (18.84 ∗ (−45.68%(18.84 ∗ (18.84%(18.84 ∗ (𝐶𝑜𝑃𝑟𝑑[𝑛] − ∑

𝐶𝑜𝑃𝑦[𝑛]

𝑁

𝑁
𝑛=1 ))))))

)

 
 

𝑁
𝑛=1  



 

 

The 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑎𝑟𝑒𝑎 index begins by shifting the 𝐶𝑜𝑃𝑟𝑑 signal by subtracting the mean value 

of 𝐶𝑜𝑃𝑦, then amplifying this difference by a factor of 18.84, approximately 6𝜋. Subsequently, 

the operation 18.84 modulus is applied to the previous result, generating a signal whose values 

are constrained within the range (−∞, 18.84). These values are again amplified and then the 

modulus with respect to -45.68 is calculated on the previous transformation. 

This series of operations allows highlighting cyclic patterns in the signal, and components with 

extreme values are attenuated, delimiting their values within the range (−45.68, 309.617). 

Finally, the transformed signal is weighted by additional multiplications, and the total sum of 

the resulting vector is performed. Although the exact details of the saturation thresholds are not 

yet fully understood, the 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑎𝑟𝑒𝑎 index is a nonlinear measure capable of capturing 

relevant features in the 𝐶𝑜𝑃𝑟𝑑 signal that relate to the fall risk. 

In experiment 3, the 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − ℎ𝑦𝑏𝑟𝑖𝑑 index experienced a growth in node size compared to 

previous experiments. This is a common occurrence when working with GP, and can make it 

more difficult to understand the structure of the index fully. However, it remains simple to 

compute. 

In experiment 4, the frequency-based CoP indices were optimized. During the first attempt 

(experiment 4.1), the AGP algorithm was trapped in a local optimum, as the optimized index 

contained nested repetitive elements exclusively from the 50% and 95% frequency power 

indices. This nested behavior led to a considerable increase in the number of nodes, making the 

final formula incomprehensible. Therefore, experiment 4 was executed again (experiment 4.2), 

excluding the indicators POWER50RD, POWER95RD, POWER50AP, POWER95AP, 

POWER50ML, and POWER95ML. As a result, a new 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 CoP index was 

obtained through a mathematical formula with fewer terms.  

In Experiment 5, mathematical domain optimization was performed using entropy as a 

foundation. As a result, the 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 index was formulated based on three equations 

that incorporate trigonometric and logarithmic components 

Although, the 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 ℎ𝑦𝑏𝑟𝑖𝑑, 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 and 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 formulas are extensive and difficult 

to understand, because it was decided to design a custom program to automatically calculate 

the indices, so the python function, and the full details of the formula can be found in the Github 

Repository. 

https://github.com/enriquehdez98/Genetic-CoP
https://github.com/enriquehdez98/Genetic-CoP


 

 

Finally, in Experiment 6, all state-of-the-art CoP indices were included as part of the initial 

population. After optimization, the 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑓𝑎𝑙𝑙 𝑟𝑖𝑠𝑘 CoP index was obtained, which is 

expressed as follows: 

∑ {

5

𝑖=0.15

𝑓𝑟𝑒𝑞[𝑖]: cos((54.84 ∗ 𝑚 + 67.49) ∗ 𝑝𝑠𝑅𝐷[𝑖]) ≤ −77.82 ∗ 𝐶𝑜𝑣(𝑝𝑠𝑀𝐿[𝑖]), 𝑖 ∈ 𝑁} 

Where 𝐶𝑜𝑣 refers to the covariance matrix, 𝑓𝑟𝑒𝑞 is the vector of frequencies contained from 

0.15 to 5 Hz of the 𝑝𝑠𝑅𝐷 spectrum, and 𝑚 is a vector containing the indices of 𝑓𝑟𝑒𝑞.  

Initially, the 𝑝𝑠𝑅𝐷 signal is amplified by the linear operation (54.84 + 67.49), which varies with 

frequency. Subsequently, the application of the cosine function introduces a nonlinear 

oscillatory modulation on the amplified signal, which decreases in amplitude as the frequency 

increases. This modulated signal is then compared to a negative threshold defined by the 

spectral covariance in the mediolateral direction, scaled by -77.82. 

A high covariance in 𝑝𝑠𝑀𝐿 indicates a better ability of compensatory movements to achieve 

balance [15][35], which could justify why adults at risk of falling have a lower mean genetic-

fall risk value than those without risk of falling. Since the covariance is in units of 𝑚𝑚2, the 

amplification factor -77.82 is applied to adjust the threshold scale, making it more sensitive to 

negative signal values cos((54.84 ⋅ 𝑚 + 67.49) ⋅ psRD[𝑖]). The indices that meet the above 

condition are selected within the frequency vector and their corresponding 𝑓𝑟𝑒𝑞[𝑖] values are 

summed, producing a single scalar value named 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑓𝑎𝑙𝑙 𝑟𝑖𝑠𝑘. A simplified functional 

explanation of the genetic CoP indices, as well as their correlation with traditional CoP indices 

reported in the state of the art, and with the FES-I and BEST clinical scores, is presented in 

Table 1. 

Table 1. Functional explanation of genetic CoP indices 
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The optimization of each mathematical domain of the CoP indices over the 1,000 generations 

for each of the experiments 1 to 6 are shown in Figure 3.  In all experiments, a rapid exploration 

phase was observed before 150 generations. In experiment 1, the macro-average F1-score 

remained constant for many generations, and after the cataclysm event showed a considerable 

increase. In contrast, in experiment 2, the cataclysm did not change the constant value of the 

maximum macro-average F1-score. 

In experiments 3, 4, 5, and 6, the mean fitness value remained oscillating and relatively far from 

the maximum value, which could indicate the need for a higher number of generations in the 

exploitation phase. Simultaneously, this suggests that adaptive functions allow slower 

convergence and make it possible to extend the exploration phase to improve the maximum 

fitness value in each generation. A common behavior in all experiments was that the lower the 

macro-average F1-score reported by the state-of-the-art, the higher the optimized performance 

rate obtained over the known performance. This might suggest that starting from an initial 

population with worse performance improves the ability of the AGP to find new solutions in 

the search space. 

The descriptive statistical results of the genetic CoP indices are presented in Table 2. The 

analysis reveals that the fall risk group exhibits lower values for most genetic indices, except 

for 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑓𝑎𝑙𝑙 𝑟𝑖𝑠𝑘, and 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦. Regarding the data distribution, most 

indices, except 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦, and 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 followed a normal distribution. 

In addition, statistically significant differences were found between the groups with and without 

fall risk for all the genetic indices evaluated. 

The results of the logistic regression analysis for each genetic CoP index and for the combined 

indices are presented in  

 



 

 

 

Table 3. The findings reveal that 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 is the most sensitive genetic CoP index 

for identifying individuals at fall risk. This genetic CoP index maintains the most robust relation 

in discriminating between individuals with and without fall risk, reaching an average AUC of 

0.763 in the 5-fold cross-validations performed. As for identifying individuals without risk, the 

𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑎𝑟𝑒𝑎 CoP index showed the highest specificity, with a value of 0.798. However, it 

is important to note that this last CoP genetic index has a relatively low sensitivity. Additionally, 

the performance of the multivariate logistic regression model that combined all genetic CoP 

indices was lower than that of the univariate model using only the genetic-frequency index. 

This result may be explained by information redundancy, as suggested by the high correlations 

observed among the genetic indices, presented in Figure A1 in the APENDIX A1. 

Table 2 Statistical analysis of the genetic CoP indices by groups 
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3.977 × 108

± 4.715 × 108 

4.773 × 108

± 5.186 × 108 

3.241 × 108

± 4.125 × 108 
0.000* 0.030* 

               
3.961 × 1014

± 1.647 × 1014 

3.522 × 1014

± 1.720 × 1014 

4.367 × 1014

± 1.472 × 1014 
0.001* 0.000* 

           q      
1.588 × 1033

± 1.885 × 1033 

8.701 × 1032

± 1.143 × 1033 

2.253 × 1033

± 2.177 × 1033 
0.000* 0.000* 

                −0.59 ± 0.08 −0.57 ± 0.07 −0.62 ± 0.07 0.200 0.000* 

                  1.605 × 102 ± 98.00 1.264 × 102 ± 89.55 1.921 × 102 ± 95.28 0.012* 0.000* 

* Statistical significance 

 

 

Table 3. Performance of the logistic regression analysis for genetic CoP indices 

          M                 

  1            R                U  

                 0.710 0.716 0.710 0.713 0.787 0.632 0.686 

             0.581 0.614 0.594 0.602 0.798 0.391 0.568 

               0.694 0.697 0.694 0.696 0.745 0.644 0.692 

           q      0.746 0.746 0.746 0.746 0.734 0.759 0.763 

                0.686 0.694 0.687 0.691 0.777 0.598 0.676 



 

 

                  0.705 0.708 0.705 0.707 0.755 0.655 0.692 

                                 0.710 0.710 0.710 0.710 0.710 0.710 0.763 

Prec=Precision, Rec=Recall, Acc=Accuracy, Spe=Specificity, Sen=Sensitivity, AUC=Area Under the Curve 

 

Figure 3. Optimization of the performance of CoP genetic indices by adaptive genetic programming through generations. 

Discussion 

Fall risk assessments could be described in three main approaches: comprehensive medical, 

nursing fall risk, and functional mobility assessments. Comprehensive medical assessments 

look at intrinsic factors such as previous falls, balance, strength, chronic illness, and medication, 

usually as part of a general or specific geriatric assessment following a fall. Although detailed, 

they require considerable time, and resources such as multidisciplinary teams. In addition, they 

do not generate a clear risk index, limiting their standardization [26].   



 

 

On the other hand, nursing fall risk assessments performed in hospitals and nursing homes, use 

screening tools such as the STRATIFY to identify risks based on intrinsic patient characteristics, 

such as history of falls and mobility. These quick and easy-to-apply assessments are frequently 

updated, but their lack of depth and accuracy may affect their effectiveness depending on the 

setting and staffing [26]. 

Finally, functional mobility assessments, used by outpatient physical therapists, employ tests 

such as the Time Up and Go Test [3] to measure gait and balance limitations. Although they 

provide standardized measures of functional disability, they do not consider other intrinsic 

factors and their implementation can be demanding for patients and professionals [18]. These 

limitations in all three approaches underscore the need for more comprehensive and 

standardized tools to assess fall risk accurately and efficiently [26]. 

Our AGP approach aims to be a complementary hybrid alternative to existing methods, 

highlighting its quantitative characteristics derived from using a force platform. This 

methodology requires only that the patient remains standing on the platform for 60 seconds, 

and some anthropometric data. It offers ease of calculation, high sensitivity and specificity to 

accurately identify older adults with and without fall risk. In addition, a program available on 

Github Repository, it has been developed that automatically calculates genetic indices from the 

CoP signal to simplify the analysis process, taking into account parameters such as sampling 

frequency. 

AGP was implemented to optimize the individual performance of CoP indices in the most 

commonly used mathematical domains according to the state-of-the-art [28][29]. The increase 

in performance ranged from 14.6% to 27.0%. Table 4 compares the genetic CoP indices 

improved by AGP and the maximum values previously reported in the literature.  

Table 4. Increased performance of genetic indices compared to the state-of-the-art 

M            

       

                                                I         

           1                  1       [%] 

D                                  0.710 MVEL 0.433 27.0 

                           0.581  RE    0.356 22.4 

H                              0.694 M REQ   0.531 16.3 

   q      

         
           q      0.746 M REQML 0.559 18.7 

E                             0.686  E RD 0.559 12.7 

https://github.com/enriquehdez98/Genetic-CoP


 

 

                                  0.705   REQML 0.559 14.6 

 

Notably, we succeeded in reducing the original 45 state-of-the-art CoP indices across 5 

mathematical domains to just 6 genetic CoP indices, 5 characterizing specific mathematical 

domains, and 1 providing global characterization. Furthermore, both Pennone et al. [25] and 

Liao et al. [24] point out that CoP indices rarely manage to effectively distinguish between 

conditions with and without risk of falling. In this context, the observation of statistically 

significant class differences across all genetic indices demonstrates the robustness of the 

proposed method. 

Contrary to the findings of Pennone et al. [25], who suggest that the low specificity of activities 

of daily living, about static stabilometric tests, limits the ability to accurately identify the class 

of fall risk, the present study demonstrated that static stabilometric signals do possess attributes 

capable of identifying such risk. Furthermore, we suggest that Pennone's results and those 

reported in the state of the art could be due to the limited capacity of typical CoP indices to 

adequately characterize fall risk, this limitation is likely due to the overlap between the 

distributions of individuals with and without fall risk. 

Empirically, in our previous studies about the CoP indices [9] [10] [18] [20], we have observed 

considerable overlap in the distributions of groups with and without fall risk in all the indices 

analyzed. This overlap makes it difficult to separate the classes of interest in means of a decision 

frontier, either linear or even nonlinear, using machine learning or deep learning algorithms [8].  

This overlap issue is illustrated, for example, in the study by Reilly et al. [31], who reported a 

recall of 0.82 for the fall risk class, but a much lower recall of 0.64 for the non-risk class. 

Similarly, Cuaya et al. [6] achieved a sensitivity of 0.81, accompanied by a notably low 

specificity of 0.19. Considering that high recall values indicate the model’s ability to correctly 

identify the most positive cases, and that specificity reflects the capacity to recognize 

individuals without the condition of interest [13], this behavior suggests a scenario of 

overlapping class distributions [8] [23]. In such situations, the class of interest tends to dominate 

the learning process due to its greater representation, leading to a bias in the prediction. As a 

result, the decision boundary shifts toward the minority class, causing misclassification of 

samples of no interest that are close to the overlap region [23].  

To illustrate the CoP indices overlapping distributions problem, in Figure 4 a plot of 

distributions including the CFREQML, TOTEX, and FREQDRD CoP indices is presented, 



 

 

these represent the best performance in the present study, the best reported in a previous study 

that only considered the most popular indices in static stabilometry [40], and the worst 

performance observed in this study, respectively. Also, to compare the above results with the 

genetic CoP indices, we present the distributions of the 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 −

𝑓𝑎𝑙𝑙 𝑟𝑖𝑠𝑘, and 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 − 𝑎𝑟𝑒𝑎 indices, which correspond to the two best and the worst 

performance according to their AUC in this analysis. 

 

Figure 4. Comparison of the state-of-the-art and genetic CoP indices distribution in the identification of fall risk in older 
adults 

In this context, we suggest that future efforts should not focus exclusively on applying CoP 

indices with distribution problems to increasingly robust classifiers. Instead, it would be more 

valuable to directly analyze stabilometric time series or to develop new CoP indices that 

overcome the problem of overlapping distributions. It is also essential to devote efforts to the 

creation of heterogeneous, open-access data sets that are free of inter-class imbalance problems. 

One of the limitations of this study was the use of CoP signals obtained exclusively from 

stabilometric tests performed under firm surface conditions and with the eyes open. However, 

this approach was chosen because the test is simpler and faster to perform, which facilitates its 

applicability to people of different ages and with diverse cognitive and physical abilities. 

Another limitation of the study lies in the small size of the sample analyzed, which also presents 



 

 

a bias due to the predominance of women since only 21.06% of the data corresponds to men. 

This sex imbalance may introduce bias in the modeling process, potentially limiting the 

generalizability of the proposed genetic indices to broader or more diverse populations. 

The success of these genetic CoP indices suggests a promising direction for fall risk assessment 

tools. However, before genetic indices can be widely adopted in clinical practice, further 

research is necessary to establish specific cut-off points, evaluate correlations with validated 

clinical scales, and explore other relevant aspects to ensure effective clinical implementation. 

Validation of these indices across diverse populations and clinical contexts will be crucial to 

consolidate their utility as a reliable tool for fall risk assessment in clinical practice.  

Conclusions 

The results of this study demonstrate that fall risk identification in older adults can be enhanced 

through the generation of novel CoP indices using AGP, which are called genetic CoP indices. 

While previous approaches relied on typical CoP indices that only described balance and 

partially characterized fall risk, our methodology's use of a targeted fitness function focused on 

fall risk identification enabled the development of a more effective fall risk index. The proposed 

approach provides some simple calculation formulas that facilitate future adoption in clinical 

settings, at the same time these indices could provide input features to classification algorithms 

to improve the accuracy of current tools. 

References 

1. Bailly, A., Blanc, C., Francis, É., Guillotin, T., Jamal, F., Wakim, B., & Roy, P. Effects 

of dataset size and interactions on the prediction performance of logistic regression and deep 

learning models. Computer Methods and Programs in Biomedicine, 2022, 213:106504. 

 

2. Banzhaf, W. Artificial Intelligence: Genetic Programming. International Encyclopedia 

of the Social & Behavioral Sciences, 2001. DOI:/10.1016/B0-08-043076-7/00557-X 

3. Beauchet, O., Fantino, B., Allali, G., Muir, S., Montero-Odasso, M., & Annweiler, C. 

Timed Up and Go test and risk of falls in older adults: A systematic review. The Journal of 

Nutrition, Health & Aging, 2011,15: 933–938. 

4. Burks, A. R., & Punch, W. F. Genetic programming for tuberculosis screening from raw 

X-ray images. Proceedings of the Genetic and Evolutionary Computation Conference, 2018 

:1214–1221. 

5. Clark, R. A., Mentiplay, B. F., Pua, Y.-H., & Bower, K. J. Reliability and validity of the 

Wii Balance Board for assessment of standing balance: A systematic review. Gait & Posture, 

2018, 61:40–54. 



 

 

6. Cuaya-Simbro, G., Perez-Sanpablo, A.-I., Morales, E.-F., Uriostegui, I. Q., & Nuñez-

Carrera, L. Comparing machine learning methods to improve fall risk detection in elderly with 

osteoporosis from balance data. Journal of Healthcare Engineering, 2021, 2021. 

7. Davut, A., & Alagoz, B. B. A review of genetic programming: Popular techniques, 

fundamental aspects, software tools and applications. Sakarya University Journal of Science, 

2021, 25(2):397–416. 

8. Denil, M., & Trappenberg, T. Overlap versus imbalance. Advances in Artificial 

Intelligence: 23rd Canadian Conference on Artificial Intelligence, Canadian AI 2010, 2010, 

220–231. 

9. Estévez-Pedraza, Á. G., Hernandez-Laredo, E., Millan-Guadarrama, M. E., Martínez-

Méndez, R., Carrillo-Vega, M. F., & Parra-Rodríguez, L. Reliability and usability analysis of 

an embedded system capable of evaluating balance in elderly populations based on a modified 

wii balance board. International Journal of Environmental Research and Public Health, 2022, 

19(17), DOI: 10.3390/ijerph191711026 

10. Estévez-Pedraza, Á. G., Parra-Rodríguez, L., Martínez-Méndez, R., Portillo-Rodríguez, 

O., & Ronzón-Hernández, Z. A novel model to quantify balance alterations in older adults based 

on the center of pressure (CoP) measurements with a cross-sectional study. PLoS One, 2021, 

16(8):e0256129. 

11. Fatima, R., Khan, M. H., Nisar, M. A., Doniec, R., Farid, M. S., & Grzegorzek, M. A 

Systematic Evaluation of Feature Encoding Techniques for Gait Analysis Using Multimodal 

Sensory Data. Sensors, 2023, 24(1):75. 

12. Ghaheri, A., Shoar, S., Naderan, M., & Hoseini, S. S. The applications of genetic 

algorithms in medicine. Oman Medical Journal, 2015, 30(6):406. 

13. Google. Classification: Accuracy, recall, precision, and related metrics, 2024, 

https://developers.google.com/machine-learning/crash-course/classification/accuracy-

precision-recall Accessed 29 July 2025 

14. Hamacher, D., Singh, N., Van Dieën, J. H., Heller, M., & Taylor, W. R. Kinematic 

measures for assessing gait stability in elderly individuals: A systematic review. Journal of The 

Royal Society Interface, 2011, 8(65): 1682–1698. 

15. Harbourne, R. T., & Stergiou, N.. Movement variability and the use of nonlinear tools: 

Principles to guide physical therapist practice. Physical Therapy, 2009, 89(3):267–282. 

16. Harvard Health. Balance. Harvard Health, 2023 

https://www.health.harvard.edu/topics/balance#balance9 Accessed 29 July 2025 

17. Hernández-Galicia, M. A., & Hernandez-Laredo, E. Detection of Plant-Disease 

Relationship Using Long Short-Term Memory Networks. XLVII Mexican Conference on 

Biomedical Engineering: Proceedings of CNIB 2024, 2025: 185. 

18. Hernandez-Laredo, E., Estévez-Pedraza, Á. G., Santiago-Fuentes, L. M., & Parra-

Rodríguez, L. Optimizing Fall Risk Diagnosis in Older Adults Using a Bayesian Classifier and 

Simulated Annealing. Bioengineering, 2024,11(9) DOI: 10.3390/bioengineering11090908 

19. Hernandez-Laredo, E., & Hernández-Galicia, M. A. (n.d.). Detecting Confusing Drug 

Names Based on the Phonetic Characteristics of Mel-Frequency Cepstral Coefficient and 

Evolutionary Computation. XLVII Mexican Conference on Biomedical Engineering: 

Proceedings of CNIB 2024, 2025:159. 

https://developers.google.com/machine-learning/crash-course/classification/accuracy-precision-recall
https://developers.google.com/machine-learning/crash-course/classification/accuracy-precision-recall
https://www.health.harvard.edu/topics/balance#balance9


 

 

20. Hernandez-Laredo, E., Parra-Rodríguez, L., Estévez-Pedraza, Á. G., & Martínez-

Méndez, R. A Low-Cost, IoT-Connected Force Platform for Fall Risk Assessment in Older 

Adults. Congreso Nacional de Ingeniería Biomédica, 2023 :374–385. 

21. Koza, J. R. Genetic programming as a means for programming computers by natural 

selection. Statistics and Computing,1994,4:87–112. 

22. Kozinc, Ž., Löfler, S., Hofer, C., Carraro, U., & Šarabon, N.. Diagnostic balance tests 

for assessing risk of falls and distinguishing older adult fallers and non-fallers: A systematic 

review with meta-analysis. Diagnostics, 2020,10(9):667. 

23. Kumar, A., Singh, D., & Shankar Yadav, R. Class overlap handling methods in 

imbalanced domain: A comprehensive survey. Multimedia Tools and Applications, 2024, 

83(23) DOI:/10.1007/s11042-023-17864-8 

24. Liao, F.-Y., Wu, C.-C., Wei, Y.-C., Chou, L.-W., & Chang, K.-M. Analysis of center of 

pressure signals by using decision tree and empirical mode decomposition to predict falls 

among older adults. Journal of Healthcare Engineering, 2021. 

25. Pennone, J., Aguero, N. F., Martini, D. M., Mochizuki, L., & do Passo Suaide, A. A. 

Fall prediction in a quiet standing balance test via machine learning: Is it possible? PLoS One, 

2024, 19(4):e0296355. 

26. Perell, K. L., Nelson, A., Goldman, R. L., Luther, S. L., Prieto-Lewis, N., & Rubenstein, 

L. Z. Fall risk assessment measures: An analytic review. The Journals of Gerontology Series A: 

Biological Sciences and Medical Sciences, 2001, 56(12):761–766. 

27. Popovic, D. Computational Intelligence in Time Series Forecasting. Advances in 

Industrial Control: Theory and Engineering Applications. Springer, 2005. 

28. Prieto, T. E., Myklebust, J. B., Hoffmann, R. G., Lovett, E. G., & Myklebust, B. M. 

Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE 

Transactions on Biomedical Engineering, 1996, 43(9):956–966. 

29. Quijoux, F., Nicolaï, A., Chairi, I., Bargiotas, I., Ricard, D., Yelnik, A., Oudre, L., 

Bertin-Hugault, F., Vidal, P.-P., Vayatis, N., & others. A review of center of pressure (COP) 

variables to quantify standing balance in elderly people: Algorithms and open-access code. 

Physiological Reports, 2021, 9(22):e15067. 

30. Quijoux, F., Vienne-Jumeau, A., Bertin-Hugault, F., Zawieja, P., Lefevre, M., Vidal, P.-

P., & Ricard, D. Center of pressure displacement characteristics differentiate fall risk in older 

people: A systematic review with meta-analysis. Ageing Research Reviews, 2020, 62:101117. 

31. Reilly, D. Feature selection for the classification of fall-risk in older subjects: A 

combinational approach using static force-plate measures. 2019, BioRxiv, 807818. 

32. Rodrigues, F., Domingos, C., Monteiro, D., & Morouço, P. A review on aging, 

sarcopenia, falls, and resistance training in community-dwelling older adults. International 

Journal of Environmental Research and Public Health, 2022, 19(2):874. 

33. Ruchinskas, R. Clinical prediction of falls in the elderly. American Journal of Physical 

Medicine & Rehabilitation, 2003, 82(4):273–278. 

34. Santos, D. A., & Duarte, M. A public data set of human balance evaluations. PeerJ, 2016, 

4:e2648. 



 

 

35. Stergiou, N., & Decker, L. M.. Human movement variability, nonlinear dynamics, and 

pathology: Is there a connection? Human Movement Science, 2011, 30(5):869–888. 

36. Vanneschi, L., & Poli, R. Genetic programming—Introduction, applications, theory and 

open issues. Handbook of Natural Computing, 2012, 2(4), DOI: /10.1007/978-3-540-92910-

9_24 

37. Vázquez, E. V., Ledeneva, Y., & García-Hernández, R. A. Combination of similarity 

measures based on symbolic regression for confusing drug names identification. Journal of 

Intelligent & Fuzzy Systems, 2020, 39(2), DOI:/10.3233/JIFS-179875 

38. Wang, C.-S., Juan, C.-J., Lin, T.-Y., Yeh, C.-C., & Chiang, S.-Y. Prediction model of 

cervical spine disease established by genetic programming. Proceedings of the 4th 

Multidisciplinary International Social Networks Conference, 2017, :1–6. 

39. WHO. WHO global report on falls prevention in older age. World Health Organization, 

2008. 

40. Wiśniowska-Szurlej, A., Ćwirlej-Sozańska, A., Wilmowska-Pietruszyńska, A., & 

Sozański, B. The Use of Static Posturography Cut-Off Scores to Identify the Risk of Falling in 

Older Adults. International Journal of Environmental Research and Public Health, 2022, 19(11), 

DOI: /10.3390/ijerph19116480 

 

APENDIX A1 Dictionary of terms for coding center of the pressure indices, operators 

and variables 

Table A1 Binary tree nodes by type 

Type Operator or variable Meaning 

Statistical aggregates and 
NumPy operator 

    M                         

    M                         

                                             

       M                        

                                               

     M       q                       

                                    

                                  

w     E                                    

    R                                     

                     ,  𝑐𝑜𝑣(𝑋, 𝑌) 

 q    q                         , √x 
   ,    2,    10 L                  ,         2           10  

      ,       ,         I                               

     R                           T         

       T                      H                  

   ,    ,     T                       

        D                          , 𝑥 ⋅
π

180
 

  w            w                   

     D                      w             

         R                         , ∇𝑓(𝑥) 

    E                   , ex 

    1 expm1: 𝑒𝑥 − 1,           𝑥 

       I                                

       I                                

Signals 

𝐶𝑜𝑃𝑦 D             w                                    

𝐶𝑜𝑃𝑥 D             w    ML                              

𝐶𝑜𝑃𝑦[𝑡 + 1]                              2    3,000 

𝐶𝑜𝑃𝑦[𝑡 − 1]                              1    2,999 

𝐶𝑜𝑃𝑥[𝑡 + 1]                              2    3,000 

𝐶𝑜𝑃𝑥[𝑡 − 1]                              1    2,999 

𝐶𝑜𝑃𝑟𝑑 R                                                        ., 1996  

𝑝𝑠𝑅𝐷  𝐶𝑜𝑃𝑟𝑑   w            

𝑝𝑠𝐴𝑃 𝐶𝑜𝑃𝑦   w            

𝑝𝑠𝑀𝐿 𝐶𝑜𝑃𝑥   w            



 

 

M      D       𝑟𝑑  M                  w    𝐶𝑜𝑃𝑥     𝐶𝑜𝑃𝑦        

𝑓𝑟𝑒𝑞 Hz    q                    0.15    5      𝑝𝑠𝑅𝐷 

𝑚                                       𝑓𝑟𝑒𝑞 

Arithmetic operators 

+          

              

* M              

/ D        

** E              

// I                

% M       

Relational operators 

== Eq       

¡= N    q       

>              

< L         

<= L             q       

>=                  q       

Constants N L                         = 6,000 

 

Table A2  Binary tree nodes by type 

Domain CoP indices [unit] Abbreviation Formula 

Time Domain 
”Distance” 
Measures 

M             [  ] MDI T 
1

𝑁
∑𝑅𝐷[𝑛] 

M             ML [  ] MDI TML 
1

𝑁
∑𝑀𝐿[𝑛] 

M                [  ] MDI T   
1

𝑁
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1

𝑁
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1/2
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1
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1
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R        [  ] R N E   max(𝐶𝑜𝑃𝑦) 

Time Domain 
”Area” Measures 

95%     .             
[  ^2] 

 RE    π[𝑀𝐷𝐼𝑆𝑇 + 1.645𝑠𝑅𝐷]2 

             ML 
[  ^2] 

   ML 
1

𝑁
∑𝑀𝐿[𝑛]𝐴𝑃[𝑛] 

95%     . E            
[  ^2] 

 RE  E 6π[𝑅𝐷𝐼𝑆𝑇𝐴𝑃2𝑅𝐷𝐼𝑆𝑇𝑀𝐿2 − 𝑠𝐴𝑃𝑀𝐿2]1/2 

Time Domain 
”Hybrid” 
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Figure A1 Correlation matrix of CoP genetic indices with respect to state-of-the-art CoP indices and scores on the Falls 
Efficacy Scale (FES) International and Balance Evaluation Systems Test (BEST) 

 

 

 


