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Abstract
Purpose: The purpose of this study was to investigate the effects of foot strike patterns and
running-induced fatigue on the biomechanical responses of the knee and ankle joints in amateur
marathon runners by analyzing the combined effects of these two factors on lower limb joint
kinematics, kinetics, and muscle activation characteristics under different conditions. Methods:
A total of 26 participants were recruited. 13 male amateur marathon runners with habitual non-
rearfoot strike and 13 with rearfoot strike patterns underwent mild, moderate, and severe
running-induced  fatigue interventions. Kinematic,. ground < reaction = force, and
electromyographic data were collected. A two-way analysis of variance was performed in SPSS
for statistical analysis. Results: Fatigue level significantly affected knee joint range of motion
(p = 0.023), peak joint moment (p = 0.003), and joint stiffness (p = 0.040). The non-rearfoot
strike runners exhibited significantly greater ankle joint range of motion (p < 0.001), and lower
peak joint moments (p < 0.001) compared to rearfoot strike runners. A significant interaction
effect between fatigue and foot strike pattern was observed on the Root Mean Square amplitude
of the medial gastrocnemius (p = 0.017) and biceps femoris (p = 0.021). Conclusion: A
significant interaction effect between fatigue and foot strike patterns was observed in Root
Mean Square. Given the impact of localized muscle fatigue on joint kinematics and kinetics,
the non-rearfoot strike runners may demonstrate intense fatigue-related biomechanical
alterations to the knee and ankle joints during the latter stages of long-distance running. These
results suggest that understanding foot strike biomechanics under fatigue may inform training
and injury prevention.
Keywords: Marathon, Foot strike pattern, Running-induced fatigue, Amateur runners, Lower
Limb.
1 Introduction

In recent years, marathon running has experienced rapid global growth, with an increasing

number of amateur runners actively participating in marathon training and competitions [38].
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Although long-distance running can effectively improve cardiopulmonary function and
physical fitness [12], it has also become a major contributing factor to musculoskeletal fatigue
accumulation in the lower limbs, due to prolonged and high-intensity repetitive impact loading
[9]. The average incidence of running-related musculoskeletal injuries has been reported to be
40.2%, with the knee and ankle identified as the most affected anatomical sites [21]. In the
absence of professional guidance and biomechanical optimization the risk of running-related
injuries (RRI) is significantly increased among amateur runners [32].

The foot strike pattern, in the context of running, has been identified as a key factor
influencing lower limb shock absorption and load transmission. Studies have demonstrated
significant differences in lower limb kinematic and kinetic characteristics between rearfoot
strike (RFS) and non-rearfoot strike (NRFS) running patterns [40]. Runners habituated to RFS
experience higher peak vertical ground reaction forees [25]. These high-load impact forces are
rapidly transmitted through the lower limbs, constituting an important biomechanical
mechanism that effects the risk of tibial stress fractures and plantar fasciitis [4],[28],[30].
Runners habituated to NRFS_experience relatively lower impact loads upon initial ground
contact; however, this process places greater functional demands on the ankle joint and calf
muscles [23],[24]. These biomechanical differences suggest that varying foot strike patterns
may exert distinct effects on joint loading.

Although biomechanical | studies suggest potential benefits of NRFS running,
epidemiological research has shown no significant difference in injury risk between the two
patterns [1]. A potential-.contributing factor to this discrepancy may be running-induced fatigue
(RIF). The onset of RIF not only weakens neuromuscular control and proprioception [27] but
also alters joint movement patterns and compensatory mechanisms during running, this may
increase the load on passive structures such as ligaments and cartilage [22]. RIF particularly
affects the gastrocnemius, quadriceps, and hamstrings, and the functional decline of these
muscles under fatigued conditions can lead to abnormal loading of the knee and ankle joints,
thereby impacting the lower limb biomechanical responses [31]. Therefore, considering the

dependence of NRFS on ankle function, running fatigue may interact with strike pattern,
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offsetting the biomechanical advantages of NRFS and resulting in no significant difference in
injury risk between different running postures.

Some studies have supported the hypothesis that the biomechanical advantages of NRFS
patterns are offset by RIF. It has been found that, under fatigued conditions, runners with NRFS
patterns and high training volumes exhibit significantly smaller changes in ankle plantar flexion
and hip external rotation moments compared to those with moderate training volumes [39].
Evidence has also shown that forefoot strike runners are able to maintain performance by
compensating for decreased gastrocnemius activation through increased activation of the biceps
femoris [19], indirectly indicating a significant decline in ankle joint function under fatigue in
NRFS runners. A follow-up study on amateur competitive runners after completing a 12-
kilometer race revealed that the relative pressureon the left foot decreased by 3.2%, while
postural balance and plantar flexion strength-were significantly reduced [29]. These fatigue-
related biomechanical changes may exacerbate abnormal lower limb joint loading. Previous
studies have investigated the independent effects of specific foot strike patterns and RIF on
lower limb joint loading [26],[33], but mechanistic investigations into their combined effects
remain limited, particularly due to the lack of systematic data in amateur runner populations.
This research gap limits our understanding of the combined effects of injury risk factors;
therefore, it is of significant scientific value and practical importance to investigate the
combined effects of foot strike patterns and running fatigue on the kinematics, kinetics, and
muscle activation characteristics of the lower limb joints in amateur marathon runners.

The purpose of this study was to investigate the effects of foot strike patterns and RIF on
the biomechanical responses of the knee and ankle joints in amateur marathon runners by
analyzing the combined effects of these two factors on lower limb joint kinematics, kinetics,
and muscle activation characteristics under different conditions. It is hypothesized that, with
increasing levels of fatigue, adaptive changes in lower limb muscle activation will occur to
maintain locomotor function, and that runners with NRFS patterns will exhibit greater declines

in peak knee moment compared to RFS runners.

2 Materials and Methods
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2.1 Participants

A total of 26 male amateur marathon runners were recruited for this study, including 13
habitual RFS and 13 habitual NRFS. The inclusion criteria were a minimum of 2 years of long-
distance running experience, right-leg dominance, a weekly running volume of no less than 40
km, a personal best half marathon time within 1 hour and 55 minutes
(https://www.runchina.org.cn), and no lower limb injuries within the past 6 months. The
participants’ baseline characteristics are presented in Table 1. Results of the paired sample t-
test indicated that there were no statistically significant differences,between the two groups (p >
0.05). The study was conducted in accordance with the Declaration of Helsinki and approved
by the Ethics Committee of Ningbo University (TY20250210). All participants were informed

of the experimental procedures and voluntarily signed an informed consent form prior to

participation.
Table 1. Basic characteristics of the participants
Index RFS(n=13) NRFS(n=13) P
Age (years) 23.1(2.75) 24.4(2.42) 0.888
Height (crh) 173.5(4.39) 174.4(4.70) 0.688
Body mass (kg) 64.3(5.92) 66.1(5.35) 0.728
BMI (kg'm?2) 20.3(1.58) 21.8(1.98) 0.786
Running experience (years) 4.1(1.73) 4.0(1.58) 0.603
Weekly mileage (km) 61.0(17.40) 62.7(16.9) 0.826
Half marathon PB (min) 92.1(12.18) 90.5(11.05) 0.798

RFS: Rear-foot strikers; NRFS: Non-rearfoot strikers; BMI: Body Mass Index; PB: Personal
Best.

2.2 Experimental protocol

The experiment was conducted in a biomechanics laboratory, and the experimental setup
and protocol illustrated in Figure 1. During the experiment, participants remained shirtless and
wore standardized tight-fitting shorts and carbon-plated running shoes (C202 6th Generation,
ANTA Sports, Jinjiang, China). Before each trial, participants performed a 10-minute self-
paced warm-up run on a treadmill, followed by the researchers’ preparation procedures, which

included skin preparation on the dominant lower limb (removal of leg hair and cleaning of
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superficial debris with alcohol wipes), and the placement of wireless surface electromyography
(sEMG) sensors. Using ultrasound imaging(Mindray M7, Mindray Bio-Medical Electronics
Co., Shenzhen, China), the muscle bellies of the rectus femoris (RF), biceps femoris (BF),
tibialis anterior (TA), medial gastrocnemius (MG), and lateral gastrocnemius (LG) were
identified, and the electrodes were attached along the direction of the muscle fibers (Delsys,
Natick, MA, United States). 38 spherical reflective markers, each 10 mm in diameter, were
attached to bony landmarks according to previous established protocol [5],[14],[35]. The
placement of the reflective markers and EMG electrodes is shown.in Figure 1(A).
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Figure 1. Experimental setup and protocol overview. (A) Schematic diagram of reflective marker and EMG
electrode placement. (B) Flowchart of the fatigue intervention protocol. PRE indicates baseline data collection
before fatigue; MF refers to the mild fatigue intervention; MOF represents the moderate fatigue intervention; and

SF denotes the severe fatigue intervention. (C) Schematic representation of the laboratory setup.

Three treadmill-based fatigue interventions were conducted on a treadmill (h/p/cosmos,
Nussdorf-Traunstein, Germany), following a protocol adapted from previous research [16]. To
simulate air resistance during outdoor running, the treadmill incline was set to 1°. Participants
began running at 6 km/h, with the speed increased by 1 km/h every 2 minutes. Throughout the
fatigue intervention, the Borg Rating of Perceived Exertion (RPE) Scale was used to assess
perceived exertion [3], with participants asked to report their RPE every minute. Fatigue levels

were classified based on Borg scale scores: an RPE of 13 indicated Mild Fatigue (MF), 15
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denoted Moderate Fatigue (MOF), and 17 corresponded to Severe Fatigue (SF). Once an RPE
of 13 was reached, the speed was maintained as the steady-state pace, and participants continued
running until the target fatigue level was achieved, followed by a 2-minute countdown to
conclude the intervention. Participants visited the laboratory 3 times, with each session
involving MF, MOF, and SF interventions in sequence. Data was collected after each trial, with
three valid datasets obtained under each fatigue condition for analysis, and a washout period of
no less than 48 hours was enforced between sessions. Total running distance was monitored
using the treadmill’s built-in distance measurement function and recorded upon completion of

each intervention.

2.3 Data collection

The sequence of data collection and the laboratory environment schematic are depicted in
Figure 1(B) and Figure 1(C), respectively. Baselinedata were collected prior to the first fatigue
intervention.

Prior to dynamic data‘collection, participants stood at the center of the experimental
environment to get static standing data. Subsequently, participants ran naturally at a comfortable
pace and with their habitual running style along an 18-meter indoor track. At the same time, a
photoelectric gate measured the speed as participants passed over the force plate. A 3D motion
capture,system with 10 cameras (Vicon Metrics Ltd., Oxford, United Kingdom) recorded
kinematic data at a frequency of 200 Hz. 2 force plates (Kistler, Winterthur, Switzerland)
collected ground reaction forces (GRF) during the running support phase at a frequency of 2000
Hz. Delsys wireless SEMG equipment recorded muscle activity signals at a frequency of 2000
Hz. A valid data collection was defined as when the participant naturally ran along the track,
with their right foot fully landing on a force plate and no reflective markers or EMG electrodes
falling off. 3 valid data sets were collected for each condition.

2.4 Data analysis
Data from the dominant leg was analyzed. Vicon Nexus (version 2.15.0 x64, Vicon Motion

Systems, Oxford, UK) was used to extract the running stance phase, with a GRF threshold of
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10 N, generating c3d files. Custom-written MATLAB (R2022a, The MathWorks Inc., Natick,
MA, USA) code was employed to export marker trajectory files, ground reaction force files,
and EMG signal files from the c3d files.

Kinematic and kinetic analyses: Model was scaled in OpenSim 4.3 (SimTK, Stanford
University, CA, USA) using static trial data. Inverse kinematics tools in OpenSim were used to
estimate sagittal plane kinematics of the knee and ankle joints, while inverse dynamics tools,
incorporating kinematics data (filtered using OpenSim's built-in 4th-order Butterworth low-
pass filter with a 6 Hz cutoff frequency) and GRF, were employed to obtain sagittal plane
kinetics [6],[34],[36]. Custom Python scripts were developed to normalize the kinetic data by
participant body weight. Joint stiffness (kjoint)was defined as the ratio of change in joint moment
(AM) to change in joint angle (A0) during the stance phase. Joint stiffness was calculated using

the following formula [15]:

AM
kjoint =20 (1

EMG signal: Custom Python-scripts were developed to preprocess raw EMG signals. First,
a high-pass filter with a cutoff frequency of 20 Hz was applied to remove Direct Current offset,
followed by a 4th-order Butterworth band-pass filter (20-450 Hz) to eliminate low-frequency
motion artifacts and high-frequency noise. The filtered EMG signals were then full-wave
rectified and normalized to the maximum amplitude value across all channels under each
experimental condition. This normalization method focuses on capturing the within-muscle
changes across different experimental conditions. To evaluate muscle activation intensity, root
mean square (RMS) values were calculated [7]. The RMS was computed using the following

equation:

RMS = \/%z,lgzl[xk]z k=1,2....,N )
N: number of samples; xj: the k-sample
2.5 Statistical Analysis
Data analysis was conducted using IBM SPSS Statistics 26 (Version 26.0, IBM Corp.,

Armonk, New York, United States). All continuous variables are expressed as mean + standard



215  deviation (SD). First, the normality of the dependent variables was assessed using the Shapiro-
216  Wilk test. For data that followed a normal distribution, a two-way repeated measures ANOVA
217  was conducted to assess the main effects and interactions of foot strike pattern (2 levels) x
218  fatigue level (4 levels). Mauchly’s test was used to assess the sphericity assumption, and if
219  violated, the Greenhouse-Geisser correction was applied. If the interaction was significant,
220 simple effects analysis was performed, followed by pairwise comparisons with Bonferroni
221  correction. The statistical significance threshold was set at p < 0.05, and partial n> was reported
222  to quantify effect size.
223 3 Results
224 3.1 Running-related parameters
225 As shown in Table 2, statistical analysis revealéd a significant increaseg‘in running distance
226  with increasing fatigue levels (p < 0.001, n> =0:878), as well asa significant increase in running
227  duration (p < 0.001, n? = 0.999). During the intervention, foot strike pattern did not exhibit a
228  significant main effect on either running distance orrunning duration. Neither foot strike pattern,
229  fatigue level, nor their interaction had asignificant main effect on post-fatigue running speed
230  (p > 0.05). Under the eight experimental eonditions, running speed did not show significant
231  changes, thereby ruling,out the influence of speed on the significance of kinematic and kinetic
232 outcomes.
233  Table 2. Mean (SD) of distance results from the running fatigue intervention and speed under
234 experimental conditions
RFS NRFS Statistical indices
PRE  MF.~ MOF SF PRE MF  MOF SF ftff’kte Ff‘:vi‘lle Interaction
ﬁl‘;‘t‘;‘gf ) 4.45 5.72 6.97 ) 4.02 5.92 794  p=0.442; p<0.001;  p=0.006;
(km) 0.63)  (0.85)  (1.28) 0.78)  (0.91)  (1.04)  1=0.025 1=0.878  1?>=0.254
El‘g;‘gf ) 22282 28752  36.75 ) 23313 28.53 37403 p=0.110; p<0.001;  p<0.001;
(min) 65) 72)  (2.09) 63)  (2.11)  .73)  p=0.162  1=0.999  12=0.723
Speed(km/h) 14.92 15.63 15.39 15.13 15.97 16.68 16.36 16.18 p=_0.770; p=_0.069; p=_0.981;
(1.05)  (1.00)  (1.01) (1.74)  (1.80) (2.02) (1.46) (2.32) 1=0.124 1=0.110  17=0.000
235  RFS: Rear-foot strikers; NRFS: Non-rearfoot strikers; PRE: Pre-Fatigue; MF: Mild Fatigue;
236 MOF: Moderate Fatigue; SF: Severe Fatigue.
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3.2 Kinematics and Kinetics

238 As shown in Table 3, the statistical analysis of knee and ankle joint range of motion (ROM),
239  peak joint moment, and joint stiffness was conducted. Fatigue level showed significant main
240  effects on knee joint ROM (p = 0.023, n? = 0.123), peak knee joint moment (p = 0.003, n* =
241  0.178), and knee joint stiffness (p = 0.040, n> = 0.135). Post hoc comparisons with Bonferroni
242  correction revealed that, in both RNS and NRFS groups, knee joint ROM significantly
243  increased at the MF compared to the PRE (p = 0.025, 95% CI [0.147;3.057]), and the peak
244 knee joint moment in the MF was significantly greater than in the MOF (p = 0.004, 95% CI
245  [0.084, 0.539]). No significant differences in knee joint stiffness were found among the different
246  fatigue levels (p > 0.05). Neither foot strike pattern nor its interaction with fatigue showed
247  significant effects on knee joint ROM, peak joint moment; or joint stiffness.
248 A significant main effect of foot strike pattern was found on ankle joint ROM (p < 0.001,
249 n?=0.677) and peak ankle joint moment (p < 0.001, n> = 0.721). Post hoc comparisons with
250 Bonferroni correction revealed that ankle joint ROM in the NRFS group was significantly
251  higher than that in the RFS group (p <0.001, 95% CI [10.379, 18.900]). Additionally, the peak
252  ankle joint moment in the NRFS group was significantly lower than that in the RFS group (p <
253  0.001, 95% CI [1.270, 0.742]). A significant main effect of fatigue level was observed on ankle
254 joint stiffness (p'= 0.007, n* = 0.154). In both RFS and NRFS groups, ankle joint stiffness at
255 the MF was significantly greater than that at the SF (p = 0.043, 95% CI [0.006, 0.026]). No
256  significant interaction effects were found for ankle joint ROM, peak joint moment, or joint
257  stiffness.
258 Table 3. Statistical analysis results of kinematic and kinetic parameters of the knee and ankle
259 joints under eight experimental conditions
RFS NRFS Statistical indices
Variables PRE MF MOF SF PRE MF  MOF  SF iﬁig Ff‘:vge‘fe Interaction
Knee ROM (°) 24.67 26.79 26.32 26.21 25.23 26.32 26.69 25.86 p:_().984; p=_0.023; p:_().747;
(244)  (325) (2.04) (329 (5.75) (4.83) (525) (3.08) 1=0.000 1?=0.123 1=0.016
Pﬁé‘é‘;‘;e 2.87 2.99 2.77 2.78 2.74 2.83 2.43 244  p=0407, p=0.003; p=0.549;
(0.76)  (0.83) (095  (0.72)  (0.71)  (0.71)  (0.98)  (0.73) 1=0.029 1=0.178  17=0.029

(Nm/kg)



Knee Joint

Stiffness 0.13 0.12 0.12 0.12 0.11 0.13 0.11 0.11 p=0.466; p=0.040; p=0.147;
S (0.01)  (0.02)  (0.02) (0.02) (0.01) (0.03) (0.02) (0.02) 1=0.022 1=0.135  1=0.072
(Nm/kg/°)
Ankle ROM (%) 23.14 27.88 23.63 25.22 38.93 39.70 40.08 39.71  p<0.001; p=0.218; p=0.325;
(4.56)  (8.99)  (5.54)  (420) (7.36) (7.61)  (9.19)  (3.68) 1=0.677 1=0.059  17=0.047
Peak Ankle -3.02 -2.83 -2.74 -2.93 -3.91 -3.91 -3.77 -3.94  p<0.001; p=0.097, p=0.711;
Moment(N/kg) ~ (0.37)  (0.43)  (0.38)  (0.53)  (0.42)  (0.37) (0.42)  (0.42) 1=0.721 w=0.088  ?=0.017
Agglf?ni‘;lsm 0.13 0.11 0.13 0.11 0.10 0.10 0.10 009  p=0.060; p=0.007; p=0.719;
2 2 2
(Nmvkel®) 0.03)  (0.03)  (0.02)  (0.01) (0.03) (0.02) (0.03) (0.01) 1=0.140 W>=0.154  W>=0.018
260  RFS: Rear-foot strikers; NRFS: Non-rearfoot strikers; PRE: Pre-Fatigue; MF: Mild Fatigue;
261  MOF: Moderate Fatigue; SF: Severe Fatigue. Bold italics indicate statistical significance.
262 3.3 RMS of the EMG
Medial Gastroenemius Rectus Femoris Biceps Femoris
0 P 30 40
[ ——— —
sof ) 4 ' 5
E 0 E 1o g
;; 10 ‘; 5 i ; v
0 FRE MF MOF SF 0 PRE MF MOF SF 0 PRE MF MOF SF
Lateral Gastrocnemius w Tibialis Anterior
RFS
40 B ~RFS
= = 30
E 30 %
E 2
2 63 PRE MF MOF SF 2 I B S
264 Figure 2. Bar chart of RMS wvalues of lower limb EMG signal. * indicates a significant main effect of foot strike
265 pattern; # indicates a significant main effect of fatigue level. RFS: Rear-foot strikers; NRFS: Non-rearfoot
266 strikers; PRE: Pre-Fatigue; MF: Mild Fatigue; MOF: Moderate Fatigue; SF: Severe Fatigue.
267 Figure 2 presents the statistical results of RMS for the MG, LG, TA, RF, and BF. No
268  significant main effects of foot strike pattern were observed for any of the muscles, including
269 MG (p=0.187,1>=0.071), LG (p = 0.507, 1> = 0.019), TA (p = 0.228, n> = 0.060), RF (p =
270  0.130,m>=0.093), and BF (p =0.090, > =0.115).
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No significant main effects of fatigue level were found for LG (p = 0.290, n* = 0.050) and
BF (p = 0.537, n* = 0.024). However, significant main effects of fatigue level were observed
for MG (p < 0.001, n? =0.393), TA (p < 0.001, n* = 0.278), and RF (p < 0.001, n* = 0.365).
Post hoc comparisons with Bonferroni correction revealed that the RMS of MG was
significantly lower in the PRE compared to MF (p = 0.004, 95% CI [1.512, 9.994]) and MOF
(p <0.001, 95% CI[2.822,9.270]), while it was also significantly lower in SF than in MF (p <
0.001, 95% CI [3.117, 9.815]) and MOF (p < 0.001, 95% CI [3.012, 10.506]). For TA,
significant differences in RMS were found between PRE and ME (p <'0.001, 95% CI [5.309,
14.643]) and between PRE and MOF (p = 0.001, 95% CI [3.681, 15.387]), with RMS
significantly lower in both fatigues compared to PRE. Regarding RE; the RMS was significantly
lower in PRE than in MOF (p = 0.041, 95% CI [0:175, 12.375]) and SF (p < 0.001, 95% CI
[8.211, 16.371]), and significantly lower in MF compared to SF (p < 0.001, 95% CI [4.516,
13.200]).

There were no significant interaction effects between foot strike pattern and fatigue level
for the RMS of LG (p = 0.107, 9> = 0.087), TA (p = 0.190, n?> = 0.064), and RF (p =0.831, n?
= 0.012). However, there were significant interaction effects for MG (p = 0.017, n? = 0.131)
and BF (p =0.021, n?=0.146). Post hoc comparisons with Bonferroni correction revealed that,
at the MOF fatigue level, NRFS runners exhibited significantly higher RMS of MG compared
to RFS (p=0.012,95% CI [2.289, 16.907]). Among NRFS runners, MG RMS in the PRE was
significantly lower than in both MF (p = 0.012, 95% CI [1.214, 13.210]) and MOF (p < 0.001,
95% CI[5.321,14.439]). Furthermore, RMS of MG in MF (p=0.001, 95% CI [2.929, 12.403])
and MOF (p <0.001, 95% CI [5.034, 15.633]) were significantly higher than those in SF. In
RFS runners, MG at MF was significantly higher than at SF (p = 0.023, 95% CI [0.529,
10.003]). For BF, RMS at the MOF level were significantly higher in NRFS runners than in
RFS runners (p = 0.007, 95% CI [2.441, 14.191]). Additionally, among NRFS runners, BF
RMS at MF was significantly lower than at MOF (p = 0.009, 95% CI [0.885, 7.886]).

4 Discussion
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This study aimed to investigate the interactive effects of foot strike pattern and fatigue
level on lower limb biomechanical responses, specifically by analyzing the changes in lower
limb biomechanics and muscle activation characteristics of amateur marathon runners with
habitual NRFS and RFS patterns under 4 fatigue conditions: non-fatigued, MF, MOF, and SF.
The main findings revealed that fatigue significantly affected knee joint ROM (p = 0.023), peak
moment (p = 0.003), and joint stiffness (p = 0.040), and induced adaptive changes in the muscle
activation intensity of the MG, TA, and RF. Compared to RFS runners, NRFS runners exhibited
significantly greater ankle ROM (p < 0.001) and reduced peak ankle moment (p < 0.001). A
significant interaction between fatigue and foot strike pattern.was observed for the RMS of MG
(p = 0.017) and BF (p = 0.021), with post hoc analysis-showing that NRFS runners had
significantly higher MG and BF RMS than RFS runners at the MOF fatigue level. These
findings suggest that runners with different habitual foot strike patterns exhibit distinct
biomechanical adaptations under specific fatigue conditions.

The results of this study regarding the effects of RIF on the participants are consistent with
previous research. Johannsen suggested that long-distance running induces relaxation of the
knee joint in the sagittal plane [20]. This study further found that, under three different fatigue
conditions, both NRFS and RFS runners exhibited a significant increase in knee joint ROM
compared to PRE levels. Notably, the effect of increasing fatigue on peak knee joint moment
follows a nonlinear decay pattern, and peak knee joint moment is highest during the MF
compared to the other three fatigue conditions. This may be due to the activation compensation
state of the muscles during MF, where the muscles temporarily enhance output to maintain
performance [13]. Under the MF condition, runners with RFS patterns exhibited relatively
higher activation in the LG, whereas runners with NRFS patterns showed relatively higher
activation in the MG and BF. However, as fatigue deepened, LG activation in RFS runners
gradually decreased, and BF activation in NRFS runners progressively declined, whereas RF
activation increased in both foot strike patterns. Muscle function progressively deteriorated,
leading to diminished moment compensation ability and reduced joint shock absorption

capacity [10],[11]. Foot strike pattern primarily has a significant impact on ankle joint
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movement patterns, with NRFS runners exhibiting a 58.60% increase in ankle joint ROM
compared to RFS. This result is further supported by the significant reduction in peak ankle
joint moment for NRFS runners (p<0.001). The occurrence of this phenomenon may be
attributed to the NRFS pattern, which increases the ankle joint's range of dorsiflexion and
plantarflexion, thereby more effectively absorbing shock, thereby reducing the instantaneous
load on the joint; however, this characteristic may increase the risk of repetitive strain on the
plantar fascia [8]. In this experiment, an increase in running fatigue did not significantly alter
knee joint stiffness, which may be due to the reliance of knee joint stability on the dynamic
regulation mechanisms of soft tissues during the fatigued phase [2],[17]. Ankle joint stiffness
in the MF was significantly greater than in the SF, which may be attributed to the body's
compensation for the reduced control capacity .caused by fatigue through joint stability.
However, as fatigue increases, this compensatory. mechanism gradually fails, leading to a
reduction in joint stiffness, which may increase ankle joint instability during the stance phase
[18]. Contrary to the hypothesis of this study, we did not observe significant interactive effects
of foot strike pattern and running fatigue on lower limb kinematics and dynamics in runners,
which may be since, under the fatigue reached in this experiment, amateur marathon runners
still possessed sufficient functional redundancy to maintain their physical activity.

Although no significant differences were observed in external performance between the
two foot strike patterns with increasing fatigue, notable changes were observed in the SEMG
signals. The EMG results indicated that the RMS of the MG was significantly higher in the MF
and MOF compared to PRE but decreased in the SF. This may be due to neural compensation
maintaining muscle activation during the MF and MOF, whereas metabolic fatigue dominated
in the SF, leading to a significant reduction in the RMS of the MG. The results indicate that the
RMS of the RF continuously increased with fatigue progression. As the primary extensor of the
knee joint, the RF recruits more high-threshold motor units and increases firing frequency to
maintain extension force as fatigue intensifies. Additionally, knee joint stiffness exhibited a
decreasing trend with deepening fatigue [37]. It is noteworthy that there is a significant

interaction effect between fatigue and landing pattern on the SEMG signals of the MG and BF.
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In the MOF, NRFS runners exhibited higher MG activation intensity compared to the RFS
group, and MG activation followed a trend of initially increasing and then decreasing with
increasing fatigue. This suggests that NRFS runners maintain joint stability by increasing calf
muscle force during the MOF, but the compensatory capacity of the muscles is exhausted during
the SF. Additionally, NRFS runners exhibited higher BF activation in the MOF compared to
the RFS group, suggesting that they limit excessive joint movement by increasing the force of
the hamstring group, but this may increase muscle load. These results indicate that NRFS
runners are more prone to localized muscle fatigue compared to RFS runners. Furthermore, in
the SF, no significant difference was observed in RMS between NRFS and RFS runners,
suggesting that muscles may be completely fatigued, ‘leading to a decline in athletic
performance. Given the high demand for the MG and BF in NRFS runners [24], the NRFS
runners may exhibit a greater extent of lower limb biomechanical responses under fatigued
conditions.

This study has several limitations. First, the participants in this study were amateur male
marathon runners, and the diversity of gender and athletic levels was not addressed, which
limits the generalizability and applicability of the study's conclusions. Second, although the
fatigue intervention.process was conducted in a controlled laboratory environment, it was
difficult to fully replicate the complex fatigue responses induced by the combined effects of
psychological, physiological, and environmental factors in an outdoor running setting, which
may limit the external validity of the findings when applied to real-world long-distance running
scenarios. Finally, this study only analyzed lower limb biomechanics in the sagittal plane and
did not include an analysis of multi-plane kinematics, and the use of this EMG normalization
method may result in the loss of information regarding the relative force contribution of each
muscle. Future studies could expand the sample size to include female runners and athletes with
varying training levels (e.g., beginners, elite athletes) to enhance the generalizability of the
results. Additionally, the fatigue intervention could be conducted on outdoor marathon routes
or training settings to increase the practical applicability of the results. Finally, future research

could broaden the scope of analysis by incorporating three-dimensional joint motion and plantar
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pressure data, as well as adopting a more comprehensive EMG normalization approach,
enabling a more in-depth investigation of the mechanisms through which foot strike patterns
and fatigue affect lower limb function.
5 Conclusions

In this experiment, significant main effects were observed for both foot strike pattern and
fatigue level on lower limb kinematic and kinetic parameters. Foot strike pattern significantly
affected ankle joint ROM, with NRFS runners showing greater mobility than RFS, while fatigue
was primarily evident in changes to knee joint ROM, peak moment, and joint stiffness before
and after fatigue. However, a significant interaction effect between fatigue and foot strike
patterns was observed in the EMG signals, with significant differences in MG and BF muscle
activation between the foot strike patterns in the/MOF, indicating that different foot strike
patterns lead to varying degrees of local muscle fatigue. Given the impact of localized muscle
fatigue on joint kinematics and kinetics, NRFS runners may demonstrate intense fatigue-related
biomechanical alterations to the knee and ankle joints during the latter stages of long-distance
running. These results further teflect'thescomplex effects of foot strike patterns and fatigue

levels on lower limb kinematics and kinetics:
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