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The aim of this paper is to stress the importance of a proper statistical determination of the sample
size in experimental research, and to underline the possible effect of an experiment with an inadequate
number of cases on the results. The first part of the paper introduces the statistical concepts needed for
the sample size calculation. Type I and II errors are defined and the associated probabilities are presented.
Statistical power of a test is explained and its correlation with the sample size and experimental variabil-
ity is defined. In a second section, the criteria for the calculation of the sample size are described. In the
third part of the article, a statistical comparison between a real experiment and a numerical simulation is
shown to highlight the consequences of the selection of different sample sizes. The risk of drawing mis-
taken conclusions caused by an inadequate sample size calculation is thus calculated.

Key words: sample size, statistical power, @ and [ errors, null hypothesis Hy

Glossary of symbols used

Hy — Null hypothesis. Any difference between samples is caused by random variations.

H, — Alternative hypothesis. The difference observed between samples is caused by the presence of
a systematic factor.

Z, — Abscise corresponding to the a value in the standard normal distribution. It is the threshold that
separates the no-rejection area from the rejection ones. It is possible to define this score for each
statistic distribution (7, for Student’s distribution, F, for Fisher’s distribution, etc.).

Zg — Abscise corresponding to the f value in the standard normal distribution under Hy. It is possible
to define this score for each statistic distribution (T for Student’s distribution, Fj for Fisher’s
distribution, etc.).
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o - Population standard deviation.

2y — Sample standard deviation.

o — Probability of rejecting Hy when Hy is actually true. Type I error.

F - Probability of failing to reject Hy when Hy is actually false. Type Il error.

1 - B~ Statistical power. Probability of detecting an existing difference between samples.
6 - Relevant difference between populations.

n - Sample size.

¢ - Non-centrality parameter.

1. Introduction

The relevance and reliability of experimental findings are severely affected by the
planning of the experiment. The sample size calculation (i.e. the number of specimens
to be tested) is one of the most important tools of a correct planning [12]. Often
aresearcher is interested in detecting the difference between two or more samples (for
instance in assessing whether a new prosthesis offers more or less stress shielding
than an existing one, or in assessing whether a material wears more or less than an-
other one, or in assessing whether a drug is effective in reducing the occurrence of
osteoporosis). Hence, it is necessary to define strictly such a sample size that allows
detecting the required difference.

In fact, the first researcher’s question should be: how many cases guarantee rele-
vant results?

Not always can this problem be easily solved, because due to resource limitations
(time and money) the choice is very limited. Increasing the scale of experiment makes
it generally expensive and time-consuming. On the other hand, in many cases patients
and resources are “wasted” in a study that is not conclusive because of a too small
sample size. This causes poor efficacy of the test employed and it may reduce any
chance of revealing aspects of clinical importance. It is possible that no significant
difference between groups is observed as a consequence of an inadequate number of
cases, whereas a larger sample would have detected the same difference as significant.
An investigator should then seriously consider whether it is worth performing the
investigation, when the number of cases that can be afforded is too limited. An answer
to this question can be given by considering the statistical power.

The aim of this article is to point out the importance of a correct sample size de-
termination.

This paper is divided into three sections. The first section presents the tools
needed for a complete understanding of the topics related to statistical testing and the
sample size determination. The second section defines the criteria for determining the
sample size. In the third section, a numerical simulation is presented in order to show
the results that are obtained for different sample sizes. The simulation is based on the
data gathered in real experiment with the aim of evaluating the mechanical features of
bone cement.
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2. Statistical power in hypothesis testing

A strong correlation exists between sample size, statistical power and variance.
This issue involves statistical concepts such as the null hypothesis Hy and alternative
hypothesis H, [4]. Under the null hypothesis Hj every difference between the samples
is caused by random variations, whereas under the alternative hypothesis H, the dif-
ferences observed are caused by the presence of a systematic factor.

2.1. The @ and £ values

Let X, and X; be the means of two random samples (e.g., x is the amount of wear
debris produced by two prosthesis designs with different coatings, A and B). We want
to evaluate if a systematic difference exists between A and B (e.g., we want to under-
stand whether A wears to a greater or lesser degree than B). We may think of
x, and xas random variables. In fact, x, and x; represent the average of one of the

samples that can be extracted from the two respective normal populations. If A and B
are identical populations, the distribution of all possible values x, — x, is a bell dis-

tribution centred in O (figure 1; Hy distribution) [1]. If A and B are two populations
with different mean values (z, is the mean value for the population A; 15 is the mean
value for the population B, where pu, # u, ), the distribution of all possible values

X4; — X ; is a bell distribution centred in & = p, — pp (figure 1; Hy distribution).
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Fig. 1. Hy is the distribution generated from the difference of all possible samples
under the null hypothesis: the samples analysed are not different. H, is the distribution
generated from the difference of all possible samples under the alternative hypothesis:

the samples analysed are actually different and the difference is equal to &
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Hence, if we reject the null hypothesis Hy we conclude that the two populations (e.g.,
the two prosthetic designs) are significantly different. Conversely, if we do not reject
Hy we conclude that our data do not allow us to point out any difference between A
and B. These results are probabilistic conclusions: then in both cases we may commit
an error:

e The first kind of error (¢type I error, table 1) consists in rejecting the hypothesis
Hy when Hj is actually true [3]. The probability of committing such an error is indi-
cated by « (significance level).

e The second kind of error (type II error, table 1) consists in failing to reject the
hypothesis Hy when H, is false [3]. The probability of committing such an error is
indicated by £.

Table 1. Statistical errors

Null hypothesis
Null hypothesis
True False
Not rejected Correct decision Type Il error
(-0 ¥5))
Rejected Type I error Correct decision
() (1-p)

In figure 1, the tails of the distributions Hy and H, represent the o and S errors, respec-
tively. Z,, is the abscissa corresponding to the o ordinate under the distribution Hy:

e Area equal to « is the tail of the distribution Hy: the samples on the right side of
the threshold Z, are identified as the false-positive (figure 1). For these cases we
mistakenly reject Hy and the probability of this error is equal to a.

e Area equal to [ is the tail of the distribution Hy: the samples on the left side of
threshold Z, are identified as the false-negative (figure 1). S is the probability of fail-
ing to detect a real difference between the groups.

No incontrovertible rules exist to define the values that should be used for the «
and S errors. Their values are fixed by each researcher and they depend on the appli-
cation field and on details needed for the study [2]. For example, in in vitro test,
usually the « values between 0.1% and 1% are accepted. As far as the S value is con-
cerned, this is frequently fixed in the range of 10%-25%.

2.2. Delta value (9)

All the statistics described above, as well as the determination of statistical power,
are related to the decision of not rejection/rejection of the null hypothesis Hy. Not
rejecting/rejecting Hy is equivalent to establishing whether a difference between
groups is significant. An investigator must then indicate the magnitude of the differ-
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ence () between the population means that is considered as relevant to investigation.
In other words, the investigator assumes that the differences smaller than ¢ are of no
practical interest (no matter if they are real or not).

As an example, let us consider a comparison between the micromotion of different
hip implants. Let us consider two samples: the control group and a novel design.
A 0.02% improvement might be of scant interest in this case, where differences be-
tween stems easily reach 50% of the values measured. An investigator might decide,
for instance, that only an improvement greater than 10% is relevant to his task. Hence,
the value of J'is fixed on 10%. The value of J is therefore determined on the basis of
the relevant difference the investigator wants to detect.

2.3. Experimental variability

An indicator of the experimental variability is required in order to compare it with
the experimental difference between the samples. The standard deviation of the
population (o) or that of the sample (s) are assumed as indicators of the experimental
variability. Several times it may be difficult to indicate a priori the value of o that
characterizes the experiment. In this case, the possible solutions are as follows:

a) to develop a pilot study in order to estimate the variability;

b) to use appropriate values extrapolated from literature;

c) to fix a value of the difference &, expressed as a fraction of o; for example 6= 1.2
times g, in this way the problem of determining o is overcome.

2.4. Statistical power (1 - f)

The probability (1 — f) of correctly drawing a true-positive conclusion is comple-
mentary to the type II error (/). This value is called the statistical power [3] and is
the measure of the probability of rejecting (correctly) the null hypothesis Hy when Hy
is false (i.e., it indicates the likelihood of detecting a significant difference by a test).
The statistical power of the test is defined by the samples on the right side of the
threshold Z, under H, (vertically shaded area, figure 1).

Moving Z,, we can modify the two error values: shifting Z, to the left causes an
increase of f and a decrease of «, whereas shifting Z, to the right results in a decrease
of o and an increase of f. As will be shown in the next sections, a possible way to
decrease both errors simultaneously is to increase the sample size.

The correlation between the number of cases (n) and statistical power (1 — f) can
be described by a curve that converges to 1 with increasing n [11]. The convergence
rate of the curve depends on the variability of the data.

All data in this paper are generated using a software implemented with SAS 6.11
(SAS Institute Inc., Cary, North Carolina, USA). Figures 2 and 3 present the results of
two fictitious experiments concerning the comparison between the means of two sam-
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ples (unpaired #-test). In figure 2, the power curves defined on the basis of the alter-
native hypothesis with a delta value () equal to 1.8 are represented. In figure 3 the
value of s fixed equal to 2.
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Fig. 3. Power curves for different « values (o constant)

In figure 2, representing the two data groups, A and B, the values of the feature o
are equal to 1.3 and 1.7, respectively. Hence, A is characterized by a smaller variabil-
ity than B. Both curves are defined for an o value equal to 1%. If we want to achieve a
power equal to 90% in the first experimental situation (curve A), we need 16 cases,
whereas for the second situation (curve B), we need at least 27 observations per sam-
ple. This example proves that the larger the experimental variability, the higher the
number of cases required to achieve the same statistical power.

In figure 3, the authors determined the power curves for different values of «
(curve A, a = 5%; curve B, a = 1%, curve C, a = 0.1%), whereas the value of o is



Sample size and statistical power in experimental 9

kept constant (o4 = o = oc = 1.9). In other words, the same experimental data are
analysed with different thresholds for a. If we are ready to accept a probability of
committing a type I error () equal to 5%, the test will achieve a power of about 90%
with only 19 cases. If we assume, however, @ = 1% and a = 0.1%, we will achieve the
same statistical power as above (90%) considering at least 27 and 45 cases, respec-
tively.

Both the examples presented above show that it is possible to achieve more pow-
erful statistical results increasing the sample size. The sample size required is highly
correlated with experimental variability. The knowledge of the experimental variabil-
ity (o) is a condition necessary for determination of the sample size [13].

3. Calculating the sample size required

In the first section of this paper, the concepts needed to determine the sample size
were introduced. In this second section, the procedure of determining the sample size
required is specified. The steps that have to be taken prior to determining the sample
size are as follows:

1. Definition of the null hypothesis H.

2. Selection of an appropriate « value (type [ error).

3. Selection of an appropriate S value (type Il error).

4. Determination of the value of J.

5. Determination of a variability statistical indicator such as the standard deviation (o).

Several books and papers supply formulas, tables and figures to calculate the sam-
ple size in all experimental designs and for all statistical tests. In table 2, there is
presented a list of references providing us with the tables and figures which are neces-
sary for calculating the sample size in some most common experimental situations.
Moreover, several software packages that calculate the sample size for the most com-
mon experimental design (comparison between two samples, comparison between
proportions, analysis of variance, etc.) are available on the market.

Many texts provide the data necessary to calculate the sample size in a form of
figure, called operating characteristic curve (O.C. curve) [14]. In order to explain the
O.C. curves, one has to define a non-centrality parameter (#), intrinsic to the relevant
statistic distribution under the alternative hypothesis, e.g.

¢ for the comparison between two samples (unpaired z-test, Student’s distribu-
tion) 8= ¢,

e for the analysis of the variance @ the non-centrality parameter of the Fisher dis-
tribution is used.

The 6 values are arranged in theoretical tables [19] and it is possible to calculate
the non-centrality parameter & based on the information introduced above. The O.C.
curve is then a plot of the type II error, 3, versus the non-centrality parameter 6.
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Table 2. References for sample size calculation

difgﬁitt]ii)n Typical applications References
Z-test Comparison between proportions FLEISS [5], 33-48, ARMITAGE [1], 200-202,
SAHAI [20]
Exact test | Exact test for 2x2x2 tables HABER [6]
Z-test Comparison between two independent | MONTGOMERY [15], 31-32, FISHER [4], 158-159
samples; o is known
t-test Comparison between two independent | MONTGOMERY [15], 31-32, FISHER [4], 158-159
samples; o is unknown
F-test Single-factor experiments (ANOVA) MONTGOMERY [15], 110-114, KASTENBAUM [7]
F-test Two-factor experiments (ANOVA) ODEH [18], 7-11
F-test Randomised block design MONTGOMERY [15], 143-145, KASTENBAUM [8]
F-test Latin squares design ODEH [18], 19-22
Simple linear and quadratic regression ODEH [18], 22-25
Clinical trials LACHIN [9], LACHIN [10]
ROC analysis OBUCHOWSKI [17], [16]

For other statistical tests such as survival analysis, logistic regression and com-
parison between proportions, other parameters are required (in place of @) to
determine the sample size.

4. Application: what happens if the wrong sample size is used?

This third section presents the statistical power analysis for an in vitro experiment
and shows a statistical comparison between a real experiment and a simulation in-
volving different numerical sample sizes. The likelihood of drawing wrong conclusion
because of an inadequate sample size is calculated.

4.1. Reference experiment: materials and methods

The reference experiment was actually performed in our laboratory [21]. The ex-
periment consists in determining the flexural Young’s modulus for two commercial
types of bone cement (Cemex HV and Cemex UHV, Tecres, Sommacampagna,
Verona, Italy), as determined in the four point bending test. The test was performed
following the procedure defined in the ISO 5833 standard, Section F. The purpose of
the investigation was to assess whether there was a significant difference between the
values of the Young modulus of two cements. An unpaired ¢-test analysis was applied.
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4.2, Statistical power calculation

A statistical power software is used to calculate the sample size needed for prov-
ing statistically that there exists the relevant difference between the samples. The
software was developed by the authors using SAS.

Following the steps listed in previous paragraphs, the following parameters were
identified:

1. Null hypothesis Hy: the values of the Young modulus of two cements do not dif-
fer from each other.

2. The «a value (type I error): an « error probability equal to 0.1% is considered
acceptable for the experiment performed.

3. The S value: the target is a statistical power (1 — f) of at least 85%. This corre-
sponds to a £ value equal or smaller than 15%.

4. The ¢ value: the researcher is interested in investigating a difference between
cement mean values equal to 100 MPa, 6 = 100. This corresponds to about 3-4% of
the mean expected. Smaller differences are of no practical interest.

5. Statistical indicator of the variability: o is obtained from previous experiments
(o= 50 MPa).
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Fig. 4. Power curve determined for the reference experiment

With this information, it was possible to determine the number of specimens re-
quired for detecting a statistical difference between the samples of about d/c = 2
times the standard deviation. Figure 4 presents the power curve for this experiment
(implemented with the statistical power software described above). The formula used
for the sample size determination is the following [4]:

n>2[ﬁﬂiﬁ—£)ﬁﬁ

o
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The analysis performed is presented in table 3. In order to detect a significant dif-
ference between the samples with a statistical power 1 — = 85% (« is fixed equal to
0.1%), it is necessary to consider at least nine specimens per cement type (figure 4).
The researchers actually used a sample of nine specimens for each of the two cement
types under investigation.

Table 3. Statistical power analysis

Samples Type I error Type Il error Power test

. Sto

size a B (1-p
3 100 = 50 0.1% 79% 21%
4 100 £ 50 0.1% 68% 32%
6 100 £ 50 0.1% 43% 57%
7 100 £ 50 0.1% 30% 70%
8 100 £ 50 0.1% 24% 76%
9 100 + 50 0.1% 15% 85%
10 100 + 50 0.1% 12% 88%
12 100 + 50 0.1% 5% 95%

4.3. Reference experiment: results and discussion

The reference experiment has shown a significant difference between the values of
the flexural Young modulus of the two cement types (unpaired t-test; p < 0.01%). The
null hypothesis Hy must then be rejected. The probability « (originally fixed to less
than 0.1%) of committing an error when rejecting the null hypothesis was actually
less than 0.01% (table 4). The statistical power (1 — ) achieved by the study was
equal to 85% (table 3). It means that the failure probability in detecting an existing
difference between the samples is equal to £ = 100% — 85% = 15%.

Table 4. Experimental results from the reference experiment

Standard
Sample Mean value . p value
Cement type P (MPa) deviation e
(MPa)
HV 9 2491 45
UHV 9 2321 56 <0.0001
Ho: ttyv = funv

This result represents the reference point for the results produced by the numerical
simulations described below.

4.4. Numerical experiment: materials and methods

The aim of this numerical experiment was to determine the statistical results that
would be obtained if a smaller sample size were used. For this purpose, four numeri-
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cal simulations corresponding to sample sizes of 3, 4, 6 and 8 specimens were imple-
mented. All simulations were based on the data extracted from experimental
measurements taken during the reference experiment. The analyses were developed
using SAS.

The first simulation consists in:

e extracting all possible sub-samples of three elements from each of the two
populations of the nine specimens (a total of 84 sub-samples were generated from
each population);

e making all possible combinations of two sub-samples (one from each of the two
populations).

Hence, a total of 7056 sub-samples consisting of three elements from each of the
two cement types are obtained. Similarly, for the other three simulations all possible
combinations of respectively four, six and eight elements were extracted from the
same population of nine specimens (table 5).

Table 5. Number of simulation
made for numerical experiment

Number of couples

P 1 1
Al of sub-samples extracted

3 7056
4 15876
6 7056
8 81
Total number of simulations 30069

An unpaired r-test was applied to each pair of sub-samples generated, so as to
compare the values of the flexural Young modulus (similar to the comparison that was
made on the nine specimens in the reference experiment). Thus, for each sub-sample
aresult in terms of significance or insignificance of the difference was obtained. The
fraction of tests indicating a significant difference was determined for the size three,
size four, six, and eight simulations. These results were compared with those pro-
duced by the experiment with nine specimens (reference experiment) which indicated
a significant difference (p < 0.01%).

4.5. Numerical experiment: results

Table 6 summarises the results of the numerical simulation. For each of the sam-
ple sizes simulated, it presents the fraction of times the unpaired #-test determined
a statistically significant result, considering the « values of 0.1%, 1% and 5%.

With the same « value chosen as for the reference experiment (o = 0.1%), the dif-
ference appears insignificant in 94 and 68 times out of 100, with respectively 3 and 4
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specimens per sample. The results of no significance decrease to 50.4% and 23.3% of
the cases, respectively, if @ = 1% is accepted. With three specimens per sample and

accepting a higher « value (5%), the comparisons are still insignificant 17 times out
of 100.

Table 6. Numerical experiment results

a=5% a=1% a=0.1%
Sample size
n.s. signif. TiS: signif. n.s. signif.
3 17.5% 82.5% 50.4% 49.6% 94.2% 5.8%
4 0% 100% 23.3% 76.7% 68.3% 31.7%
6 0% 100% 0% 100% 2.1% 97.9%
8 0% 100% 0% 100% 0% 100%

n.s. — no significant difference between the samples; signif. — significant difference between the samples.

4.6. Numerical experiment: discussion

The unpaired #-test was applied to sample data extracted from the data obtained in
the reference experiment. At first, let us consider an « value equal to that assumed in
the reference experiment (0.1%). In 94 out of 100 cases of the first numerical simula-
tion (n = 3), the difference appears to be insignificant (this is assumed as a “wrong”
result). That means that the result obtained with a sample of 3 specimens is in agree-
ment with the reference experiment only 6 times out of 100 (table 6). In fact, the
statistical power of the unpaired #-test with 3 elements per sample was equal to 21%
(table 3). In other words, the failure probability in detecting an existing difference
between the data using 3 elements per sample was about 79%.

With four specimens per sample the percentage of “wrong” results decreased to
68%. Considering six specimens, the test would have failed to detect a significant
difference only 2 times out of 100. However, the statistical power for a sample with
6 elements (table 3) is not high yet.

The number of “wrong” results (no significant difference detected) decreases if
a larger type I error is accepted.

5. Conclusions

In scientific literature statistical methods are frequently used and a researcher has
now familiarized himself with probability indicators such as the « value. A second
probability indicator, or, better, a second type of error (/) has to be considered when
analysing the data. In fact, the condition of “insignificant difference” could hide an
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experiment with an inadequate number of cases. If a significant difference is detected,
an investigator may be satisfied with the information obtained. Conversely, a result of
insignificance does not add any information, as we are not able to establish whether
the lack of significance is due to a poor sample size or to the fact that the two popula-
tions do not differ from each other. This possible flare is checked by verifying the
statistical power (1 — /) of the test. If the statistical power is low (1- < 75-80%) the
experiment looses statistical relevance, because the observed case number is too small
to detect real differences between the data.

Correcting an experiment after it has been performed is definitely a harder task
than planning it carefully in advance. Therefore, the sample size should be appropri-
ately chosen in the first steps of the experiment so as to avoid loss of time and
resources.

The present paper illustrates this situation analysing the Young modulus of two
cement types, by comparing real experiment and numerical simulation. When the
result of numerical experiment was insignificant a researcher would have failed to
reject the null hypothesis. He would not have succeed to point out a (real) difference
between the two cement types. But if an investigator had calculated the statistical
power prior to running the experiment, he would have found that he needed at least
eight specimens to reduce the probability of the type II error (the failure probability in
detecting an existing difference between the samples) to an acceptable value of
F=24% (the test statistical power, 1 — #=76%). The study proves that a sample size
of less than eight specimens is inadequate for the analysis of the reference experi-
mental situation.

A mistake of this kind may cause problems regarding the waste of material and
human resources employed in a study. Moreover, in some cases also ethical consid-
erations are involved (e.g., if a drug is tested, whose effectiveness and/or toxicity are
unknown). An inadequate choice of the sample size may have a relevant impact from
a clinical point of view.

Summarising, the correct definition of sample size is one of the most important
tools of the study. If this is not taken into account, the risk of drawing wrong conclu-
sions and wasting time and resources can dramatically increase.
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