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Axisymmetrical flow of synovial fluid
between curvilinear bone surfaces in human joints
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Bone and cartilage co-operate in human joint. The gap between their surfaces is filled with synovial
fluid. In this case, the solution of the lubrication problem should be based on actual, various geometry of
co-operating surfaces of human joint. In this paper we consider a symmetrical flow of synovial fluid
between spherical, hyperbolic and parabolic bone surfaces in human joint. In order to study the symmet-
rical flow of synovial fluid in joint gap, we obtain velocity components and hydrodynamic pressure
distributions in final, dimensionless form.
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1. Preface

The layer boundary simplifications and solutions of basic equations of motion for
hydrodynamic, unsymmetrical synovial fluid flow simulation by means of the system
of non-linear partial differential equations using the Lamé coefficients are presented
in [1], [2]. The Lamé coefficients describe the orthogonal, curvilinear biobearing sur-
faces, e.g. parabolic, hyperbolic and spherical. Solution of this problem was not
formulated in its final form, since no analytical solution of the modified Reynolds
equation was possible. Various joints are presented in figure 1.

The layer boundary simplifications of basic equations of motion for the hydrody-
namic symmetrical flow of synovial fluid in joint gap were presented by
WIERZCHOLSKI in [3], [4], but only in a general way in arbitrary curvilinear coordi-
nates for curvilinear co-operating surfaces. The final form of symmetrical flow of
synovial fluid in spherical hyperbolic and parabolic coordinates has not been consid-
ered to date in theoretical papers, because no proper Lamé coefficients for realistic
co-operating bone surfaces have been derived (except that derived by WIERZCHOLSKI
[3]). The flow in a narrow gap depends heavily on the gap geometry.
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Fig. 1. Draft of human skeleton with joints

The main aim of this paper was to find the final form of the velocity components
vi(an, az) of synovial fluid symmetrical flow and hydrodynamic pressure p(as) for
spherical, parabolic and hyperbolic bone surfaces with non-monotonic sections in the
longitudinal direction in human joint gap, for variable gap height in longitudinal di-
rection, i.e., &£(a3), and for variable viscosity of synovial fluid. This paper is

a continuation of [3], [4].

2. Axisymmetrical flow in a narrow gap
between two rotational surfaces

The mathematical theory of the computation of flow in human joint is based on
areal model of synovial flow and real joint gap in a thin layer between two co-

operating sliding surfaces.
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Solution of the lubrication problem of human joint depends on this joint geometry.

We introduce the following, curvilinear coordinates: ¢ — circumference direction,
05 — generating path of rotational head of the bone, o, — gap height direction.

We consider axisymmetrical, stationary flow of synovial fluid in the film between
two surfaces [3]. For thin layer boundary simplifications, equations of conservation of
momentum and continuity equation have the following dimensional form [3]:

0= _a_ npﬂ L (1)
oL, oo,
():a_p, (2)
oa,
_ﬁi%:_igp 4t J n, 9 vy , (3)
by day doy,  da, dat,
dv, d
0=hyhs ﬁ+E(l1IV3 ), (4)

where 0< 0 <2, 0 < < €, b, < a3 < by, whereas b,,, b, are the limits of lubrication

in the direction ;3. The term on the left-hand side of equation (3) denotes centrifugal
acceleration.

In this case, the gap height may be a function of the variable ¢ only, i.e.
€ = £o€1(m3), or may be constant. Moreover, if a generating line of rotational surface
is monotonic for a3 € [b,, bs], we have h3 = 1 in equations (1)—(4).

For the axisymmetrical flow of synovial fluid, three components of synovial fluid
velocity depend on the variables o and o, only, i.e. v; = vi(0n, og) for i =1, 2, 3. Pres-
sure function depends on o5 only, i.e. p = popi(05).

3. Lamé coefficients

¢ The dependencies between the Cartesian xj, x; x3 and spherical coordinates on
the sphere with the radius Ry: & = ¢, a/Ry = ¥ =, (see figure 2) are as follows [4]:

.« . O o
x, =Ry sin—2cosq,, x,=R,sin—>sinq,, x;=R,cos—, (5)
R - R
where 0 < oy €271, 0 < o £ €, 0 < o3 < mRy. Equation (5) satisfies the following
equation of the sphere:
xZ+x;+x3 =RC. (6)

We neglect the terms of the order ¥ = €/Ry = 10~ and we obtain the Lamé coeffi-
cients for spherical bone surface in the final following form:
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Fig. 2. Spherical geometry

Fig. 3. Hyperbolic geometry Fig. 4. Parabolic geometry

b= Rysin 22, hy =1, =L %
RO
e Hyperbolic geometry is shown in figure 3. Radius vector of hyperbolic surface
has the form:

Yy =ix,+])x, + kx, (8)

where 1, j, k are unit vectors in the Cartesian coordinates x;. The dependencies be-
tween the Cartesian x; and hyperbolic coordinates «; for i = 1, 2, 3 on the hyperbolic
surfaces are as follows [3]:
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acoso asino tan (03 A
XN="— S, X = ) ol x3=._.£___2, ©)]
cos (Oc A) cos’(a;A) A
whereas
I |w
AE; —, 0so=<2n, 0=<m;<g,
a

|a3l < %arccos,/a/(a +w).

We make the following notations: a — the smallest radius, a; = a + w — the largest

radius, w = a; — a, 2b — the bearing length. Equation (9) satisfies the following equa-
tion of hyperbolic surface:

s T2
X+ x; = {a+(%) w:t : (10)

Neglecting the terms of the order w =¢/a = 107, we obtain the values of the Lamé
coefficients for a hyperbolic bone surface in the following final form:

B = a 1

= , hy =1, hy=
cosz(oc3A) cosz((x3A

)\/1+4(aA)2tan2(a3A). (11)

e Parabolic surface is shown in figure 4. The radius vector has the form (5). In
such a case we have the following dependencies between the Cartesian x; and the
parabolic coordinates ¢; for i = 1, 2, 3 on the parabolic surface [4]:

x, = acos’(azA)cosa;,  x, = acos’(ozA)sine, x; = %sin(%/\), (12)
whereas

0<a <a, <2m,

|a3|S—l—arccos a—w’ A=l |w
A

We denote: a — the largest radius, a, — the smallest radius, 25 — the bearing length,
w = a — a;. Equations (12) satisfy the following equation of parabolic surface:

) T2
X2+ x = |:a~(%) W:I . (13)

Neglecting the terms of the order w = €/a = 107, we obtain the parabolic Lamé
coefficients of bone surface in the following final form [3]:

h = acos*(a,A), hy =1, Iy = \/1 + 4a’ A’ sin* (o, A) cos(a,A).  (14)
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4. Mathematical description of the synovial fluid viscosity

Viscosity of synovial fluid with non-Newtonian properties has been examined ex-
perimentally by Dowson [5]. Using the experimental values [5] we obtain the ap-
proximation formulae for dynamic viscosity values, i.e. [4]:

i p=0

) = ) 15
1+ AG+B6* da, s

n,=N.+

where An = 1)y — 7., N..— dynamic viscosity of synovial fluid for high shear rate, i.e. for
6 =1000s™, 7o — dynamic viscosity of synovial fluid for low shear rate, i.e. for 8 =5 s

Moreover, the values A, B denote experimental coefficients obtained by means of
Cooke’s and Dowson’s experiments [5]. These values are obtained both for normal
and pathological joints.

THEOREM. If dynamic viscosity function of synovial non-Newtonian fluid has the
form of approximation (15) obtained from Dowson’s experiments and if we consider
the axisymmetrical flow in a narrow gap between two rotational surfaces, then dy-
namic viscosity is constant only in the gap height direction 5.

PROOF. We insert formula (15) into simplified equation of conservation of mo-
mentum (1). Differentiating this expression with respect to ¢, we obtain:

2
. 1—g[ 9%
a%y, dJa,
5 il AN 5 1=0. (16)
oo, 2
av v,
1+A—+B| —
oo, oo,

For the normal synovial fluid A = 1.88307 s, B = 0.00458 52, whereas for patho-
logical joint we have A = 0.03345 s, B = 0.00131 s”. Thus the expression in braces in
equation (16) is not equal to zero for 0 < 8< 1000 s™ and for 0.400 < 1, < 100 Pas,
0.01 £ 1..<0.400 Pa-s. Without loss of generality we have from equation (16):

9%y,
doc?

=0. (17)

Integrating twice equation (17) with respect to the variable ¢, we obtain:
v =Ca, +C,. (18)

C, and C; are independent constants of the variable .
Taking into account solution (18), then the shear rate defined in equation (15)
gives:
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dv
f=—2L=C,. 19
Ja, : )

Thus the shear rate 0 is independent of . Hence, by virtue of equation (15), the
dynamic viscosity of synovial fluid is independent of ¢, which completes the proof
of the Theorem.

5. A sketch of solution method

The synovial flow is generated by rotation of a bone. Cartilage is motionless, thus:

vw=wh, v,=0," v;=0 for a,=0 (bone surface),

(20)
v=v,=v,=0 for «a, =€ (a,;) (cartilage surface).

If we take into account the above boundary conditions for v; and v,, from equa-
tions (1) and (3) we obtain the particular solutions of velocity components: v{(p) and
v3(p), which depend on the pressure p. Solutions v;(p) and vs3(p) are next inserted
into continuity equation (4). Continuity equation (4) is integrated with respect to the
variable . Imposing the condition v, = 0 for ¢, = 0 upon the synovial fluid velocity
component in the direction of gap height, we obtain general solution v,(p). The
boundary condition v, = 0 for o, = £(3) imposed upon the general solution v( p)
leads to the modified Reynolds equation in a reduced form. From this reduced, ordi-
nary differential Reynolds equation we find a pressure function in its final form p(oz3).
The pressure function p(cs) is inserted into previously obtained synovial fluid veloc-
ity components: vi( p), v2( p) and v3( p). Hence, we arrive at final analytical solutions.

6. Analytical solutions for the axisymmetrical flow between
two rotational half-spherical bone surfaces and variable gap height

Bone head in a human hip joint is simplified to the hemispherical shape [3], [4]
(see figure 5). In this case, the flow of synovial fluid in a narrow gap is considered
to be axisymmetrical, thus the spherical coordinate system will be given in the fol-
lowing form [4]:

a; =9, O,y = Eylyy, o =Ryx. (1)

The Lamé coefficient is given by formulae (7), where y; = as/Ry and y; € (0, m/2)
is the dimensionless longitudinal coordinate. Variable gap height has the following

form: €(x1) = €0€1(x1). We define y, = on1/€ (1), where o) < €1()1). Ro denotes the
radius of the sphere.
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The motion of the head of bone implies the synovial flow in the gap. Hence, on the
surface of spherical head of the bone we assume for o, = 0:

v, =wh, =R, sin g, v, =0, v;=0. (22)

Symbol @ denotes an angular velocity of the spherical head.

Fig. 5. Human hip joint

The cartilage is motionless, therefore for @, = ¢ we obtain
v =0, v, =0, vy =0. 23)

Symbol & denotes a constant gap height.
The pressure distribution counteracts the load of a joint (see figure 5). We arrive
at the following boundary conditions in the inlet and outlet of the gap, respectively:

P = pz’ a3 :bnﬂ P =Dy a3=b:’ (24)

where p, denotes the pressure at the inlet into the articulation gap, and p,, — the pres-
sure inside the human joint gap (see figure 5). The system of equations (1)—(4) for
assumptions (21) and boundary conditions (22), (24) has following analytical solu-
tions:

v, =R, (1— b2 )sin S (25)

1 0g (Zl) 1
3 ;
£ £ %) sin
0 ))12(}}1 =1) zlyle )77 (?) Zi
pl 1

770R§ J‘

b’“g?(;(l)sin 21

Vz(azxu%’l) = _%(Pz - Pw)
dx,
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+_1—'0(02‘5,03 )’12'(}’1‘1){ d (513(}(1)5in2,1’l cos ¥, (yl—l)()’l‘?’)
60 7, sing, leL ”pl(ll)

9 sinz(bsl)—sinz(bmx)+[ 513(1’1)

.2
sin® y, cosy,
2% g 1(2:) ]

STy dx
I T |
1 0O
x|5yZ -15y,+6 ——l}, (26)
( l 1 )51(}.’1)82’1
1 1
2 .
& £ sin
o) = -L(p, - p) 2 BELRL 6, )
0f%

' n
B4 (21)sin g,

1 1
2.2 1
pPw- ey R,y <—§(Sin2 bsl—Sinzbml)h 51(7(1)3”12'1
207, | 2 I 7a() iz
L blgf xl)sin;(l 1
1¢&’si
BSOS K (5.2 15y, 46ty —1). @27)
3 npl(ll)
bj" 77,)1()(1) dy
g)siny 3 2
pla) = ppt{p, =By} 5 - e ?Pw’Rz[(Sin’bn‘Sinzbmn)
f (1) iz 0
e Gaysin g
b
sl 77 Z
J‘ 3( pl§ .1) le
o S\ /S0 ( 2b .2 )] 28
Xy —\sin“b,, —sin” g, |, (28)
77,;1(/1’1)
J. 3 a Xm
P! (ZI)Sle
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where:
An
npl :77;'0-{“77—02, 0 = %Sln X (29)
n, 1+A6+BO €
whereas
0<b, = by <y <b, LIPS )
R, R, 2

2
0<y <1, 0<a <a, <2m, pw=0(n°°2].
PE

We show the above terms of the fluid velocity components, resulting both from
the motion of the head of the bone (see terms multiplied by the factor w) and from the
pressure difference (see terms multiplied by the difference p,— py).

7. Analytical solutions for the axisymmetrical flow between two
rotational hyperbolic bone surfaces and the gap of variable height

In this case, the flow of synovial fluid in a narrow gap is axisymmetrical, thus the
hyperbolic coordinate system will take the form (see figure 6):

_ _ 1
Q= oy, Ay =&EpUays as = Zazx- (30)

Fig. 6. Radial elbow joint in hyperbolic coordinates

The values of the Lamé coefficients are given by equation (11) and 0 < oy < @, < 2m,
0< < g(as), by < a3 < b,. Dimensionless gap height and modified gap height coordinate
have the form:
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e(a;) _ Oy
&0y ) =—=, NE .
e & 1 51(0531)

€29

The motion of the head of bone implies the synovial flow in the gap. Hence, on the
surface of hyperbolic head of the bone we assume for o, = 0:

vi=oh =0 asec’(a3 ), v, =0,  v; =0, (32)

where @ is the angular velocity of the hyperbolic head.
The cartilage is motionless, therefore for & = €

v, =0, v, =0, vy = 0. (33)

Symbol € (os;) denotes the gap height. Pressure boundary conditions have the same
form as formula (24).

In hyperbolic curvilinear coordinates, the velocity components of synovial fluid
have the following form [1], [4], [5], [6]:

v =wa(l-y)sec’ (o), (34)
& a, —a o¢, (ot cos4 a
Vz(azl’a31)="—(17z _Pw) 0 12 12( = 1) 1 31) (@)
nO b aa31 np]‘Q
81(a31)Q I 3
' ( 31)

3 3 .
+pr2a£—° a-a yz(yl—l){2(yl—1)( _3) d {51 (1) 51“(“31)}

60 Ny b’ : /aa:n Np82; cos (O‘n)

_ [2 SCC4 (bsl )_ SCC4 (bml )
2 []'l npl'Qh

ot €1 (a31)

b

4
+ 2(5)11 _ lsyl + 6)61 (a31) Sln (a31) i| 1 agl } COS (a3l ) , (35)
N,182, cos (a31) & (a3) 9y, 2,

= 2
fa cos”(a
VS(a2l’a31)__—(pz_pw)——nb )’1(}’1_1) bl ( 31)
0

51(0531)_[ 3( 31)
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2 2 ennd
_ipa)2a2€_0 al_ayl(yl_l)cos (a3l) l W (b ) sec (bml)
20 b\ a sl(au) 2 "tn,, du
5 )513(0‘31) 5
2 \ € ( 31) 1 Sm(asl)
5y —15y +6 —— s (36)
9( S np( 1) €2, cos’(ay,)
b]l' ’7,;1-(2;1 da'31
o 513 (a31) 5 . .
p(a3l):p»v+(pz"pw)b-—*-_pwha {[SCC (bsl)——sec (bml)]
r 77,;1-(2/: da 20
b 1513(&31) .
by, 0
773;)1 h a,a31
& (0‘31)
o plseet (b, )-sect (a )] (37)
't npl‘Qh da
byt 513 (a3l) !
where:
bﬁ = :bml Ebm/l Sal&l SbsA Eb:l =% al _a’
a a
Oy fa, <2m, Oﬁazlsﬂsgl(aﬂ).
)

The symbols b, and by, denote the upper and lower dimensionless limits of lubri-
cation, respectively, ais the smallest radius of the cross-section of hyperboloid,
a; denotes the largest radius of cross-section of hyperboloid, and 24 is the bone
length. Moreover, we introduce the following notations:

0<y, =—22 <] and Qh_\/1+4(—)ta 2(aty,). (38)
5(0‘31) b?

Dynamic viscosity of synovial fluid has the following form:
)

77«'0 770
- o PSS E— 39
i, = Motl (@) = 1 o 15 A0+ B (39)
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The shear rate is described by the following expression:

0= ov, __wa fal—a secz(aﬂ)‘ (40)
oa, b a Oy,

8. Analytical solutions for the axisymmetrical flow between two
rotational parabolic bone surfaces and the gap of variable height

In this case, the flow of synovial fluid in a narrow gap is considered as axisymmetri-
cal, thus the parabolic coordinate system will be taken in the form (see figures 7 and 8):

_ _ |
ap = dyy, Ay = &y, Q3 = —03. 41)

A
The values of the Lamé coefficients are given by expressions (14), and 0 < o < ¢,

<2m, 0 < ;£ e(m), by £ o3 < bs. Dimensionless gap height has the same form as in
expression (31).

Joints with
parabolic shape

Fig. 7. Joint in parabolic coordinates. Fibular section by the foot across the finger I

The motion of the parabolic head of a bone implies the synovial flow in the gap.
Hence, on the surface of parabolic head of the bone we assume for a, = O:

vi=oh =a)acos2(a31), v, =0, vy =0, (42)

where @ denotes the angular velocity of the parabolic head.
The cartilage is motionless, therefore for = ¢: v, =0, v, =0, vy = 0.
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parabolic

Fig. 8. Joint in human hand

Symbol €(0s;) denotes the gap height. Pressure boundary conditions have the
same form as formula (24). In parabolic curvilinear coordinates the synovial fluid
velocity components have the following form [1], [4], [5], [6]:

v =wa(l-y, )cos* (e, ), (43)

1 £ a—
Vz(a21’a31)=“5(l’z “Pw)—oa_qu“}ﬁz

M b'a
X()’l l\agl (a 31) sec 3(05 31)
by Q
% 51( 31)Qp_[npl Esec (o 5, )dot 5,
b, €1

1 2 € a-a, , d 513(0‘31) . 3
—-—pwa— | = =3 )——| ———=sin(20;, Jcos™ (&
n, b N ()’1 ){()’1 )(}’1 )80{31 |:nplQp ( 31) ( 31)

=

9COS4 (bsl )— COS4 (bml )

b
sl n Q
2|2
3
L b 1

Esec (o, )day,

£
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; 3
_(5),12 ~15y, +6) MSin(Zau)cos%aM)] 1 dg } sec (an),

Mpu€2, £,(031) 9ety, Q,
v3(a21’a31) 1} - Ly
sec (oc31
X(Yl_l) nQ
81(“31)‘]. :1 . sec(a31)da3l
b €1 (0531)

__3_pw2a2f§_ a-a e "I)SCCZ(OCM)T cos* (b, )-cos (b,

20 b g (o bip Q
Mo a 1( 31) ZJ‘ 77;;13 » sec(a“)dam

[ b B

3
—l(Syl2 -15y, +6) —f‘—(ﬂﬂl—l—sin (2a31)cos3(a31) ;
9 npl(a3l) Qp

l]s‘l nplgp
&l (o)
1 L +|:COS4(bs1)_COS4 (a31 )] >

n, Q2
;fl - secz(a3l)doc3l
& (a3l

sec” (ay, )day,

3 [S—
h—

where:

43

(44)

(45)

(46)
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a,
0<a,<a,<2n, 0<ay, ES—SSI(a“).
0

The symbols b,,1 and b;; denote upper and lower dimensionless limits of lubrication on
the parabolic surface, respectively, a is the largest radius of the cross-section of
paraboloid, whereas a; denotes the smallest radius of the cross-section of paraboloid,
2b is the bone length. Moreover, we introduce the following notations:

OS}’lz—a-Z]——sl and sz\/l+4—a—(€b_7q‘—)smz(a31)- (47)

& (%1)

ANALYTICAL FORM OF SYNOVIAL FLUID VELOCITY COMPONENTS
AND PRESSURE DISTRIBUTION IN HUMAN JOINT GAP

NUMERICAL DETERMINATION
OF FLUID MECHANICS PARAMETERS IN BIOBEARING GAP

I '

velocity compon of St
eloc.ny omponents pressure distributions
synovial fuid for various : )
for various geometry
geometry
friction coefficients friction force load carrying
for various geometry for various geometry capacities for
various geometry

| ‘,

NUMERICAL DETERMINATION OF OPERATING
PARAMETERS FOR BIOBEARING GAP IN HUMAN JOINTS

'

l CONCRETE NUMERICAL APPLICATIONS IN MEDICINE

Fig. 9. Further steps of research taken in order to evaluate the problem

Dynamic viscosity of synovial fluid has the form of expression (39), but shear rate
is described by the following formula:
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2
0= ov, __wa fa~al cos (a3,). 48)
oa, b a 55

We show the above terms of the fluid velocity components resulting both from the
motion of the head of the bone, i.e. the Couette flow (see terms multiplied by the fac-
tor w), and from the pressure difference, i.e. the Poiseuille flow (see terms multiplied
by the difference p, — p,). Further steps taken in order to evaluate the problem are
presented in figure 9.

9, Conclusions

On the grounds of basic fluid mechanics equations and by virtue of papers [1], [2],
[3], [4], [5] the final derivation of the dimensionless and dimensional synovial fluid
velocity components and the final form of hydrodynamic pressure distributions in the
axisymmetrical flow between two rotational bone surfaces in a narrow gap of human
joint are presented. The following assumptions are accepted: variable gap height,
axisymmetrical flow, variable dynamic viscosity of the synovial fluid as non-
Newtonian fluid, curvilinear orthogonal coordinates, i.e. spherical, hyperbolic and
parabolic.

The paper gives the method of analytical determination of the synovial, non-
Newtonian fluid velocity components and the pressure distribution. The main results
obtained enable the numerical solutions of the hydrodynamic lubrication problem
which arises when two bone surfaces of various geometry cooperate in human joints.
This paper is a continuation of [1]-[4].

The lubrication mechanism of human joints have been studied for many years and
many theories have been proposed to explain the flow of synovial fluid and very low
friction and wear characteristics of these joints [7]-[10]. In the present paper, final
analytical solutions for symmetrical synovial flow in the form which have not been
elaborated hitherto are studied.
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