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The necessity of physiological muscle parameters for
computing the muscle forces: application to

lower extremity loading during pedalling

MICHALA ČADOVÁ*, MILOSLAV VILÍMEK

Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering,
Czech Technical University in Prague, Czech Republic.

The aim of this study is to determine how the use of physiological parameters of muscles is important. This work is focused on mus-
culoskeletal loading analysis during pedalling adopting two approaches: without (1) and with (2) the use of physiological parameters of
muscles. The static-optimization approach together with the inverse dynamics problem makes it possible to obtain forces in individual
muscles of the lower extremity. Input kinematics variables were examined in a cycling experiment. The significant difference in the
resultant forces in one-joint and two-joint muscles using the two different approaches was observed.
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1. Introduction

The aim of this work was to demonstrate whether
the physiological parameters of muscles are necessary
for computing the muscle forces. Since the determi-
nation of physiological muscle parameters is difficult,
these data in the literature differ (see, for example, [1]
and [2]) and the sensitivity of result to the input pa-
rameters is crucial (see [3] and [4]), it would be easier
to determine the muscle forces without the use of
these uncertain parameters. Computation without
these parameters, i.e. only with the use of joint mo-
ments and other external forces, would be much
quicker, easier and less time-consuming.

The problems posed by a human model with mus-
cles are underdetermined, thus the distribution prob-
lem and static optimization approach are used. The
advantage of this method lies in its computational
efficiency. Even though the dynamic optimization can
provide more realistic estimates of muscle forces, it is

much more computationally expensive; therefore it
would be necessary to use a more simple model to
keep the computation time in reasonable limits. The
differences between the static and dynamic optimiza-
tion were described, for example, by ANDERSON [5].

To create our model, we did not use the human
body software developed by DELP [1], but as others
did [5], [6], we created our own model that fulfilled
our requirements more precisely. Since it is necessary
to know the kinematics variables of the movement and
the force acting on the lower extremity, they are either
measured in a cycling experiment [6] as we did, or the
EMG-driven model is used [7] together with the in-
verse dynamics.

The static optimization procedure needs a cost
function to be minimized. There are several ways to
do it [8]. One of the approaches is to minimize the
sum of the muscle forces divided by the cross-
sectional area of the muscle to the power of two (or
three, or even higher power) [3]. Other approach is to
minimize only the sum of muscle forces to the power
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of two (or three, or even higher power). Finally, the
cost function can be set as the sum of the muscle acti-
vation to the power of two [9]. As we did two differ-
ent computations, we used two last approaches men-
tioned above.

First of all, we computed the muscle forces with-
out knowing the physiological parameters of the mus-
cles of the lower limb. Only the Newton–Euler’s
equations were used. In this case, the cost function
was the sum of muscle forces to the power of two.
The second case was the computation using the New-
ton–Euler’s equations together with the equation of
muscle dynamics and the consideration of the muscle
activation and physiological parameters of muscles. In
this case, the sum of the muscle activation to the
power of two was used.

Furthermore, we investigated the suitability of sev-
eral optimization approaches (Matlab© Optimization
Toolbox was used) and the most appropriate one was
chosen for the further computations. The results show
how the use of physiological parameters of muscles is
crucial in the computation of muscle forces.

2. Methods

The method can be divided into the following
steps:

(1) Create a model of lower extremity, choose
segments and joints involved in the model and take
account of the simplifications of their properties and
functions.

(2) In an experimental measurement, determine the
kinematics variables of the segments of lower ex-
tremity for one revolution of crank. Measure simulta-
neously the force of foot on the crank depending on
the crank angle.

(3) Using the method of releasing and Newton–
Euler’s equations compute the reactions and joint
torques in individual joints of mechanism.

(4) Using static optimization as well as physio-
logical and morphological parameters of chosen mus-
cles compute the forces in muscles.

2.1. 3D model

Our 3D model of the lower limb consists of seven
segments (left foot, left shank, left thigh, pelvis, right
thigh, right shank, and right foot), six joints (left and
right hips, knee and ankle) and 36 muscles of each
leg. The assumption was that the segments are rigid

bodies, characterized by mass, length and the mo-
ments of inertia; joints are ideally spherical joints
(without friction and clearance) and the only struc-
tures that are involved in the transfer of forces in the
joint are muscles, tendons and the bone contact area as
ZATSIORSKY [10] suggested.

2.2. Experimental measurement
of kinematics variables

The Qualisys Motion Capture System was used for
the record of the movement. The experiment was car-
ried out in the Laboratory of Biomechanics of Ex-
treme Loading in the Faculty of Physical Education
and Sport, Charles University in Prague. The trajecto-
ries obtained were later modified by Qualisys Track
Manager (QTM) software. Desired variables were
subsequently obtained using the Visual3D Movement
Analysis Software (C-Motion, Inc.). One particular
cycling pattern at constant frequency and performance
was chosen. It was not necessary to make more meas-
urement with different load or frequency since the
influence of these parameters has already been ex-
plored [11]–[14]. The measurement of the crank
loading was necessary for the computation of dynamic
parameters.

Fig. 1. Tangential and normal forces affecting pedal during
one revolution of crank. The positive direction of the tangential

force is in the direction of rotation of the crank; the positive
direction of normal force is pointing from the centre of crank.

The zero angle is in the top dead centre of the crank cycle

Reactions and moments are set up as parallel with
the global coordinate system. The global x-axis leads
form back to front, the global y-axis leads from right-
hand side to left-hand side, and the global z-axis is
vertical (the dextrorotary coordinate system is used).
The beginnings of local coordinate systems are lo-
cated in the centre of gravity of segments; the local
z-axis coincides with the longitudinal axis of segment
and leads from the distal end to the proximal end. The
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x-axis is perpendicular to the z-axis, lies in the sagittal
plane and makes the dextrorotary coordinate system
with the y-axis.

The measured pedal force can be seen in figure 1.
The maximal tangential and normal forces were
reached near the first quarter of crank cycle. The
starting point of the cycle is in the top dead centre.
The negative sign in the tangential force means that
the force is actually directed against the movement.
The cyclist’s performance can be improved by elimi-
nating this stage. Moreover, such muscles as m. so-
leus, m. gastrocnemius caput mediale et laterale and
other muscles that are involved in knee flexion and
the stabilization of foot arch should reach their
maxima in this phase.

Fig. 2. Joint moments of right lower extremity around
the local y-axis during one revolution of crank.

The zero angle is in the top dead centre of the crank cycle

Using the pedal force and the kinematics variables,
the moment of each joint was computed (figure 2).
Since the main motion during pedalling is in the sagittal
plane (the x–z plane), the torque moments in individual
joint around the y-axis are most contributive to the
muscle forces. Hence we were concentrated on the
sagittal plane motion only.

2.3. The computation of
the contact forces and torque moments

Weight, length, location of centre of gravity and
matrixes of inertia of individual segments were com-
puted using the equations and coefficients proposed
by ZATSIORSKI [10] and De LEVA [15] with the fol-
lowing initial values: body mass = 65 kg, body high
= 175 cm, gender: man. Contact forces and torque
moments in individual joints were solved using New-
ton–Euler’s equations
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where: m is the mass of the segment (kg), Sar  is the ac-
celeration of the centre of mass of the segment (m.s–2),
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 are the forces affecting the segment (N), vF
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 is the
resultant force affecting the segment (N), IS represents
the matrix of inertia of the segment (related to the centre
of mass) (kg.cm–2), α

r
 is the angular acceleration of the

segment (rad.s–2), ω
r

 is the angular velocity of the seg-
ment (rad.s–2), iM

r
 are the moments affecting the seg-

ments (Nm) and SvM
r

 is the resultant moment (Nm).
It is possible to write six scalar equations (1) and

(2) for each segment that can be transformed into the
matrix form. While we know the reaction and mo-
ments in the distal joint, we can easily compute the
reaction and moments in the proximal joint of the
segment. The above defined problem was solved in
the program Matlab (MathWorks©, Inc.). These forces
and moments in joints are the input parameters in the
next step of computation.

2.4. Musculotendon dynamics

For the purpose of this work, the Hill-type model
of the musculotendon complex was used [16]. The
main parts of this muscle model are the passive com-
ponent, which consists of an elastic element and pas-
sive muscle viscosity, and the active contractile com-
ponent. The model for the active contractile
component is based on the generally accepted notion
that the active muscle force is the product of three fac-
tors: (1) the length–tension relation )( M

L Lf , (2) the
velocity–tension relations )( M

v Lf &  and (3) the activa-
tion level a(t). The muscle parameters necessary for
creating scaled curves describing the attributes of
generic muscle are: the maximum isometric active
muscle force MF0 , the optimum muscle length ML0 ,
the pennation angle α 0 (when )0

MM LL =  and the ten-
don slack length T

sL . The model was in detail de-
scribed by VILIMEK [17]. Then, the muscle force can
be then calculated as follows:
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the input arguments were found in [1], [18] and [19].
The following notation is used: MF0  – the maximum
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isometric muscle force, α 0 – the pennation angle, T
sL

– the tendon slack length and ML0  – the optimum
muscle length. The only unknown variable in the
equation is the activation level of the muscle a(t),
being solved using static optimization.

2.5. The distribution problem
and static optimization method

If a system contains more unknowns than equa-
tions that describe a given mechanical system, it is
said to be underdetermined, and in general, there is an
infinite number of possible solutions. The distribution
problem is used to solve internal forces acting on the
musculoskeletal system using the known resultant
joint forces and moments.

The kinematics variables and moments in joints
are known from the experiment. What is more, the
muscle contractions are supposed to be quasi-static,
which means that the muscle forces depend on their
current excitation only. So, the optimization can be
solved independently in every moment. The problem
is then solved as a minimization of cost function.
Usually, the optimization problem is defined by three
quantities: (1) the cost function, (2) the designed vari-
ables, (3) the constraint function. There are several
approaches how to define the cost function and the
optimization criteria. A wide review can be found in
TSIRAKOS [8]. In this work, the function to be mini-
mized (the cost function φ) was chosen as in VILIMEK
[17]:
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depending on the method used.
The notation is as follows: φ is the cost function,

m
iF  is the force of the i-th muscle (N), N is the total

number of the muscles examined; ai is the activation
level of the i-th muscle.

The designed variables (the muscle forces or the
activation level) are systematically changed through-
out the computation until the cost function is opti-
mized and all constraint functions (equations (6), (7)
and (8)) are satisfied.
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The drawback of the static optimization method
with the inverse dynamics is its sensitivity to the
quality of input (kinematics) variables [20].

2.6. Calculation without
the consideration of physiological

muscle parameters

In this case, the minimization of the sum of the
muscle forces to the power of two (equation (4)) is
found. It is necessary to satisfy the equality (equation
(8)) and inequality (equation (6)) constraints. It is
important to highlight that neither the activation level
of the muscles, nor the physiological parameters of
muscles are taken into consideration. The unknown
variables are directly the forces in the muscles Fm,
where ri and M are known.

2.7. Calculation with the use of
muscle physiological parameters

We took into consideration the activation level of
muscles and their physiological parameters. The aim
was to minimize the cost function (equation (5)), i.e.
the sum of the activation levels to the second. The
equality (equation (8)) and inequality (equations (6)
and (7)) constraints must be satisfied. The FM is com-
puted from equation (3). The unknown variables are
the activation levels of muscles a(t). After computing
these activations, the muscle forces can be computed
as well (equation (3)).

3. Results and discussion

When we created our lower extremity model with
the consideration of muscles, we made several simpli-
fications relating to individual segments and joints.
Firstly, segments are supposed to be rigid bodies,
characterized by weight, length and the moments of
inertia. Secondly, joints are said to be ideal spherical
kinematics joints without friction and clearance. Finally,
the only structures involved in the transfer of forces in
the joint are muscles, tendons and the bone contact
area.
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Fig. 3. Chosen muscle forces of lower extremity computed using
the method without consideration of physiological muscle parameters.

The zero angle is in the top dead centre of the crank cycle

Fig. 4. Chosen muscle forces of lower extremity obtained using
the method with consideration of the muscle activation

and physiological parameters of muscles. The zero angle
is in the top dead centre of the crank cycle

Muscle forces computed using the method without
the consideration of physiological muscle parameters
are shown in figure 3, and muscle forces obtained
using the method with the consideration of the muscle
activation and with physiological parameters of mus-
cles are shown in figure 4.

In figures 5, 6 and 7, muscle forces in chosen
muscles computed by means of both methods are pre-
sented. The forces obtained must be critically evalu-
ated in relation to both the real motion and the maxi-
mum possible force in the muscles.

The major difference in the resultant force is in the
two-joint muscles, e.g. m. gastrocnemius caput me-
diale (figure 6). Since this type of muscle acts in two
different joints, i.e. it is involved in two different
stages of crank cycle, the behaviour of the force dur-
ing the cycle must have two maxima. This can be seen
only based on the results of the method with the con-
sideration of the physiological parameters of muscles.

Fig. 5. Force in the m. soleus. The function of m. soleus
is the plantar flexion of foot. A – neither the activation level

of muscles nor the physiological muscle parameters were used.
B – forces were computed with consideration of the activation

level of muscles and physiological muscle parameters.
The zero angle is in the top dead centre of the crank cycle

Fig. 6. The waveform of the force in the m. gastrocnemius caput
mediale. The function of this muscle is the plantar flexion of foot

and the auxiliary flexion of knee. The zero angle is in the top
dead centre of the crank cycle. A – neither the activation level
of muscles nor the physiological muscle parameters were used.
B – forces were computed with consideration of the activation

level of muscles and physiological muscle parameters

Fig. 7. The waveform of the force in the m. semimembranosus.
Its function is the plantar flexion of knee and the auxiliary

extension of the hip joint. The zero angle is in the top dead centre
of the crank cycle. A – neither the activation level of muscles nor
the physiological muscle parameters were used. B – forces were
computed with consideration of the activation level of muscles

and physiological muscle parameters

The behaviour of the force in one-joint muscles is
more or less the same. The only difference in the be-
haviour of the muscle forces is in the magnitude of the
force, even though the input variables are for all the
computations the same. It is clear that the difference is
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caused by the choice of the cost function and by the
use of the physiological muscle parameters.

4. Conclusion

From the dependence of muscle forces on the
crank angle we can conclude that for the realistic de-
termination of muscle forces during pedalling the
physiological parameters of muscles must be incorpo-
rated in the computations. Only the equations with
considering muscle physiology reflect reliably both
maxima of the forces of two-joint muscles. Even
though the results are sensitive to the incoming
physiological parameters whose values differ a lot in
the literature, it is still a contributing method.
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