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Purpose: This paper presents numerical modelling of the heat and mass transfer process in a cryopreserved biological sample. The simula-

tion of the cooling process was carried out according to the liquidus-tracking (LT) protocol developed by Pegg et al., including eight stages in 

which both the bath solution concentration and temperature are controlled to prevent the formation of ice crystals. Methods: To determine the 

temperature distribution during cryopreservation processes, one uses the Fourier equation, while mass transfer was taken into account 

using an equation based on the Fick’s laws. This paper considers a model assuming fuzzy thermophysical parameters described by a triangu-

lar and a Gaussian membership function. The numerical problem was solved using the finite difference method including fuzzy set theory. 

Results: The diagrams of temperature and mass distributions as a function on time and the distribution of the fuzzy variable at a given 

moment in time were prepared. Moreover, the fuzzy temperatures and concentrations were compared with experimental results from the 

literature in table. Conclusions: In the conclusions, two different types of membership functions were compared with each other, with 

which the fuzzy variables were described. It can be said that the Gaussian membership function works well for experimental data where 

the mean and standard deviation are known. In addition, the obtained results were confronted with experimental data. The calculated 

fuzzy temperatures are consistent with the temperature values occurring in the LT protocol. Larger differences between the experimental 

data and the calculated values are observed for the fuzzy dimethyl sulfoxide (DMSO) concentration. 
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1. Introduction 

It is quite common to model biological and engi-

neering processes as deterministic phenomena. How-

ever, simulations of physical problems that occur in 

nature are associated with some uncertainties. They are 

caused, for example, by the parameters adopted in the 

model, which are determined experimentally and that 

the measurements depend on the condition, gender, and 

quality of the acquired samples [26]. 

Two approaches can be distinguished for consider-

ing uncertain variables in the model: probabilistic and 

non-probabilistic techniques. The first is based on mod-

elling the characteristics of uncertainty through the use 

of probability distributions that describe how a given 

random variable might behave. The aim of probabilis-

tic techniques is to predict outcomes under uncertainty. 

However, their effectiveness is related to access to 

relevant empirical data obtained for a given parameter, 

which can be a limitation to their use [23], [29].On the 

other hand, non-probabilistic methods include fuzzy 

set theory and interval set theory. In fuzzy set theory, 

imprecise variables that are elements of the set are 

assigned a membership function that determines the 

degree of membership in the set. The membership func-

tion can be described by a linear function, such as a tri-

angular or trapezoidal function, or by more complex 

relationships, for example, a Gaussian function or a bell 

function [2], [16], [23]. Fuzzy set theory was first pro-

posed by Zadeh in 1965 [34]. 

Slightly different definitions are given to inaccurate 

parameters in interval set theory. The interval number 

is represented by an interval with a given specified 
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lower and upper limit [16], [23]. This concept was in-

vented by Moore in 1966 [19]. 

Let us introduce some information on cryopreser-

vation. This is a process in which the biological activity 

of biological material is reduced by lowering the tem-

perature. The purpose is to preserve samples in such 

a way that when they are rewarmed, their physiologi-

cal activities are restored [31], [35]. 

During cryopreservation, there is a possibility of 

cell or tissue damage. This is caused, for example, by 

ice crystallisation or osmotic stress. To eliminate this 

risk, the cooling (heating) rate is properly regulated and 

cryoprotective agents (CPAs) are introduced. The most 

common CPAs are glycerol, dimethyl sulfoxide (DMSO), 

ethylene glycol, propylene glycol, etc. [11], [12]. 

Depending on the cooling rate and the CPA con-

centration used, cryopreservation can be performed by 

different methods. Conventional slow freezing, for ex-

ample, is characterised by a low cooling rate (approxi-

mately 1 C/min according to Mazur [17]) and a low 

CPA concentration. Vitrification, on the other hand, 

involves rapidly cooling the sample to achieve amor-

phous ice instead of ice crystallisation. This process 

continues at high CPA concentration [11], [26]. 

Other cryopreservation techniques are worth men-

tioning. The liquidus-tracking (LT) method, for ex-

ample, involves controlling the cooling rate and CPA 

concentration to maintain the temperature in the sam-

ple above the melting point, which is altered by the 

presence of CPA [13], [26]. 

Cryopreservation is a complex multi-physical prob-

lem with coupled transport phenomena. The mathemati-

cal model includes a description of heat flow and mass 

transfer associated with molecular diffusion, as well 

as osmotic transport (microscale process) [15], [26], 

[31], [33]. 

The paper contains a numerical simulation of the 

cryopreservation process for a sample made of articular 

cartilage. The thermal processes occurring during the 

cryopreservation were examined using the Fourier equa-

tion. Furthermore, mass transfer (molecular diffusion) 

was also analysed applying an equation based on Fick’s 

laws. The study does not consider the phenomenon of 

osmotic transport. Similar analyses using a determin-

istic model can be found in the literature [15], [33]. 

However, there are also uncertainties in the cryopres-

ervation model. Our previous work used interval set 

theory [22], [24], [26], [27] and fuzzy set theory [23], 

[26], where a triangular or trapezoidal membership 

function was introduced. In this study, simulation was 

performed for fuzzy thermophysical parameters de-

scribed by a Gaussian membership function, which is 

a novel approach. The obtained fuzzy results were com-

pared with those for a triangular membership function. 

For the preparation of the numerical model, the finite 

difference method (FDM) was implemented. 

This paper is divided into four chapters. The first 

chapter provides an introduction, while the second chap-

ter describes the materials selected for the analysis and 

the methods, which include a heat and mass transfer 

model and a numerical model. The next chapter pre-

sents computational examples. The final chapter con-

tains the conclusions. The study is completed with an 

Appendix containing the basics of fuzzy numbers and 

a description of the -cuts. 

2. Materials and methods 

The study analysed the heat and mass transfer mac-

roscopically in a biological sample during the cryo-

preservation process. It simulated the cooling process 

performed according to the LT protocol developed by 

Pegg et al. [20]. The LT protocol involves eight steps, 

during which the temperature and concentration of the 

bath solution are adjusted to prevent the solidification 

process in the sample by changing its melting point in 

a controlled manner. The melting point is influenced 

by CPA, which enters the extracellular matrix of the 

sample from the bath solution. Taylor and Hunt [28] 

and Pegg et al. [20] propose a CPTes2 solution that 

consisting mainly of water, DMSO, and also KCl 

(a potassium-rich mixture). Our research only investi-

gated changes in the concentration of DMSO. 

A schematic of an example cryopreservation device 

using the LT protocol invented by Wang et al. [30] is 

shown in Fig. 1a. The study considered the computation-

al domain (Ω) of an axisymmetric sample (Fig. 1b). 

2.1. Heat and mass transfer model 

Changes in temperature distribution in the compu-

tational domain were calculated using the Fourier 

equation [3], [8]: 
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where T
~

 is the fuzzy temperature, X refers to the 

coordinate system, t is the time, Q is the heat source, 

Vc
~  and k

~
 represent the fuzzy thermophysical parame-

ters such as the fuzzy volumetric specific heat capacity 

and fuzzy the thermal conductivity, respectively. 
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For the axisymmetric problem considered in our 

study, Eq. (1) can be expressed: 
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where r and z are the cylindrical coordinates. The heat 

source Q is neglected in further considerations be-

cause articular cartilages do not have blood or lymphatic 

vessels. 

The mathematical model of heat transfer was com-

pleted for initial-boundary conditions [27], [33]: 
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(3) 

where n is the normal vector to the boundary, Γ is the 

natural convection heat transfer coefficient, Tbath is the 

temperature of the surrounding medium (a bathing 

solution), T0 is the initial temperature. 

The relationship describing the mass transfer be- 

tween external medium and extracellular solutions of the 

cell, which is named as the molecular diffusion, is the 

diffusion equation based on Fick’s law: 
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where dc~  is the fuzzy molar concentration, D
~

 is the 

fuzzy molecular diffusion coefficient. The subscript d 

represents the DMSO as CPA.  

After conversion of Eq. (4) for the axisymmetric 

problem [3], [6], [7]: 
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Please note that the fuzzy diffusion coefficient de-

pends on temperature, which confirms that the mathe-

matical model of cryopreservation represents a multi- 

-physics coupled problem. The diffusion coefficient 

can be calculated from the Einstein–Stokes equation 

[4], [18]: 

  

(a) (b) 

Fig. 1. Simplified scheme of device to cryopreservation by LT protocol (a) and scheme of sample computation domain (b) 
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where kB is the Boltzmann constant (kB = 1.38 × 10–23 

J·K–1), rs is the radius of the spherical particle,  is the 

dynamic viscosity. 

The mass transport model also includes initial-bound- 

ary conditions [27]: 
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where c0 is the initial concentration, cbath is the con-

centration of the surrounding medium (a bathing solu-

tion). The 0.9 factor reflects the mass transfer between 

the domain Ω and the surrounding medium. 

2.2. Numerical model 

The numerical model was prepared applying the 

finite difference method (FDM) considering fuzzy num-

bers theory (see Appendix). An explicit scheme was 

used to analyse transport phenomena for unsteady 

state [18]. 

A time mesh was established with a constant step, 

defined by Δt = t f–1 – t f. The grid for computational 

domain (Ω) was created based on the five-point star 

illustrated schematically in Fig. 2, where h1 and h2 rep-

resent the mesh step in the r- and z-direction, respec-

tively, node (i, j) is the central node. This concept as-

sumes that boundary nodes are located at a distance 

of 0.5 h1 and 0.5 h2 from the edge [18]. 

 

Fig. 2. Five-points star 

The idea of FDM is to convert differential equations 

into algebraic equations by replacing the appropriate dif- 

ferential quotients. Different types of differential quo-

tients can be consulted in the literature [26]. 

By substituting the relevant relations into Eq. (2), 

and after transformation, the following formula for inter-

nal nodes was obtained [26]: 
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where i = 2, 3, …, n – 1 and j = 2, 3, …, m – 1, n and m 

are the number of nodes, a corresponds to e = {(i, j + 1); 

(i, j – 1); (i + 1, j); (i – 1, j)}, eR
~

 and Φe is the fuzzy 

thermal resistance and the shape function, respectively, 

where: 

 

,~
5.0

~
5.0~

,~
5.0

~
5.0~

,~
5.0

~
5.0~

,~
5.0

~
5.0~

1
,1

2

1
,

21
,11

,1

2

1
,

21
,1

1
1,

1

1
,

11
1,1

1,

1

1
,

11
1,

−
+

−

−
+−

−
−

−
−

−
+

−

−
+−

−
−

−
−

+=+=

+=+=

f
ji

f
ji

f
jif

ji
f
ji

f
ji

f
ji

f
ji

f
jif

ji
f
ji

f
ji

k

h

k

h
R

k

h

k

h
R

k

h

k

h
R

k

h

k

h
R

 (9) 

and 

 

,
1

,
5.0

,
5.0

2

,1,1

,

1,

1,

1,

1,

1,

hhr

hr

hr

hr

jiji

ji

ji

ji

ji

ji

ji

==
+

=

−
=

+−+

−





 

(10)

 

where ri,j is the radial coordinate of the node (i, j). 

In a similar procedure, a numerical model was cre-

ated for the mass transfer, hence Eq. (5) for internal 

nodes has the form [26]: 
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where i = 2, 3, …, n – 1 and j = 2, 3, …, m – 1, eW
~

 is the 

fuzzy mass diffusion resistance: 
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The implementation of differential quotients for 

boundary nodes was reported in the paper [26], there-

fore, this element of the numerical model will not be 

presented here. 

A stability condition was also specified for the given 

model [26]: 
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3. Results 

Our study modelled the cryopreservation process 

for a homogeneous biological sample made of articu-

lar cartilage with dimensions H = 1 × 10–3 m and 

R = 3 × 10–3 m (Fig. 1b). The thermophysical parame-

ters were introduced as fuzzy numbers described by 

a triangular function and a Gaussian function. For the 

analysis for triangular fuzzy numbers, the following 

parameter values were introduced: Vc
~  = (3.728 × 106; 

3.924 × 106; 4.120×106) J·K–1·m-3 and k
~

 = (0.492; 

0.518; 0.544) W·m–1·K–1. For Gaussian fuzzy number, 

it was assumed that: the mean values are mcv = 3.924 

× 106 J·K–1·m–3, mk = 0.518 W·m–1·K–1 and standard 

deviations are cv = 1.962 × 104 J·K–1·m–3, k = 

0.026 W·m–1·K–1 for the volumetric specific heat ca-

pacity and the thermal conductivity, respectively [1], 

[32], [33]. Convection heat transfer coefficient is equal 

to Γ = 525 W·m–2·K–1 [33]. Other parameters used in 

the simulation were input data characterizing the chemi-

cal properties of CPA (DMSO) in the context of the 

diffusion phenomenon, which are rs = 2.541·10−10 m 

and μ = 1.996·10−3 Pa·s [25], [33]. 

The model was completed with initial conditions, 

where T0 = 22 °C, c0 = 0% (w/w) [27], [33]. However, 

the values of temperature and DMSO concentration of 

the bath solution used to calculate the boundary variables 

are determined based on Pegg’s protocol for cooling, as 

shown in Table 1 [20].  

For the fuzzy numbers described by the triangular 

membership function, the simulations were performed 

for  = {0; 0.25; 0.5; 0.75; 1}, while for the fuzzy 

numbers described by the Gauss membership func-

tion, for  = {0.001; 0.15; 0.25; 0.35; 0.45; 0.5; 0.65; 

0.75; 0.85; 0.95; 1}. It is also assumed that time step 

∆t = 0.005 s and mesh steps h1 = 0.0001 m and h2 = 

0.00005 m. 

Table 1. Temperature and DMSO concentration 

of the bath solution 

Step 

Time 

duration 

Temperature 

of bath solution 

Concentration 

of bath solution 

t [min] Tbath [°C] cbath [% (w/w)] 

1 10 22 10 

2 10 22 20 

3 30 −5 29 

4 30 −8.5 38 

5 30 −16 47 

6 30 −23 56 

7 30 −35 63 

8 30 −48.5 72 

In Figures 3–6, the results of the simulation, which 

were collected at point r = 0.00005 m, z = 0.000475 m 

are shown. The fuzzy temperature curves in the selected 

period of time (for 20 s of step 3) for different parame-

ters α using triangular (a) and Gaussian (b) membership 

function are illustrated in Fig. 3. In Figure 4, in analogy 

to Fig. 3, the dependence of the fuzzy concentration of 

DMSO over a selected period of time (for 20 s of 

step 3) is presented for different parameters  using tri-

angular (a) and Gaussian (b) membership function. 

  

(a) (b) 

Fig. 3. Fuzzy temperature in time (for 20 s of step 3, point r = 5 × 10–5 m, z = 4.75 × 10–4 m) 

for triangular (a) and Gaussian (b) membership functions 
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In Figure 5, the fuzzy temperature at the selected 

moment of simulation time (10 s at step 7) obtained 

for the triangular (a) and Gaussian (b) membership 

functions is depicted. Please note that the distribution of 

the variable was approximated from the results for the 

Gaussian membership function. Similarly, in Fig. 6, 

the fuzzy DMSO concentration at a selected moment 

of simulation time (10 s at step 7) received for the 

triangular (a) and Gaussian (b) membership functions 

is shown. 

In Table 2, the obtained concentration for the trian-

gular and Gaussian membership functions with the ex-

perimental data from the literature [20] are compared. 

The first two columns show the obtained fuzzy temper-

ature results for the triangular and Gaussian member-

ship functions. It can be seen that the given fuzzy tem-

peratures coincide with the bath solution temperatures 

(compare with Table 1). The next sections of the table 

show a comparison of the fuzzy DMSO concentration 

in the cellular matrix described by the triangular and 

Gaussian membership functions with the experimental 

results. For the DMSO concentration, there are differ-

ences between the simulation results and the experi-

mental data, as shown by the calculated relative error, 

the highest value of which is 15.82% (step 8) and the 

lowest value of which is 0.06% (step 4). 

  

(a) (b) 

Fig. 4. Fuzzy concentration in time (for 20 s of step 3, point r = 5 × 10–5 m, z = 4.75 × 10–4 m) 

for triangular (a) and Gaussian (b) membership functions 

  

(a) (b) 

Fig. 5. Fuzzy temperature at the selected moment of simulation time (10 s at step 7, point r = 5 × 10–5 m, z = 4.75 × 10–4 m) 

for the triangular (a) and Gaussian (b) membership functions 
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4. Discussion 

To begin with, it is worth examining the results in 

Figs. 3–6 and the Table 2. It can be seen that the tem-

perature distribution in the sample stabilises relatively 

quickly and reaches the value of the bath solution 

(Fig. 3). In the case of a change in DMSO concentra-

tion, a continuous increase is observed without any 

apparent stabilisation as in the case of the tempera-

ture curve (Fig. 4). In addition, it is noticeable in 

the graphs in Figs, 3 and 4 that the smaller the value 

of the parameter , the narrower the width of the in-

terval. From Figs. 5 and 6, it can also be observed that 

the value of parameter  affects the width of the in-

terval. Similar conclusions about the effect of the pa- 

  

(a) (b) 

Fig. 6. Fuzzy concentration at the selected moment of simulation time (10 s at step 7, point r = 5 × 10–5 m, z = 4.75 × 10–4 m) 

for the triangular (a) and Gaussian (b) membership functions 

Table 2. Comparison of results with experimental data 

Step 

Fuzzy 

temperature 

for  = 0  

(triangular  

m.f.),  

T
~

 [°C] 

Fuzzy 

temperature  

(Gaussian  

m.f.),  

T
~

 [°C] 

Fuzzy 

concentration  

for  = 0  

(triangular 

m.f.),  

dc~  [%(w/w)] 

Fuzzy 

concentration 

(Gaussian  

m.f.),  

dc~  [%(w/w)] 

Experimental 

data, cd [% (w/w)] 

Relative 

error, 

 [%] 

1 [22.0000; 22.0000] 
m = 22.0000 

 = 0.0000 

[7.8386; 

7.8386] 

m = 7.8386; 

 = 0.0000 
– – 

2 [22.0000; 22.0000] 
m = 22.0000 

 = 0.0000 
[16.7228; 16.7228] 

m = 16.7228 

 = 0.0000 
16.3 ± 1.3 2.59 

3 
[−5.5120;  

−4.5355] 

m = −5.0454 

 = 0.6996 
[26.0787; 26.0792] 

m = 26.0790 

 = 3.55×10-4 
24.5 ± 1.1 6.44 

4 
[−9.3704;  

−7.7104] 

m =  −8.5773 

 = 1.1893 
[34.1789; 34.1798] 

m = 34.1793 

 = 5.95×10-4 
34.2 ± 0.9 0.06 

5 
[−17.6384;  

−14.5136] 

m = −16.1454 

 = 2.2386 
[42.2743; 42.2762] 

m = 42.2752 

 = 0.0013 
41.7 ± 3.3 1.38 

6 
[−25.3552;  

−20.8633] 

m = −23.2090 

 = 3.2180 
[50.3691; 50.3722] 

m = 50.3705 

 = 0.0023 
47.8 ± 2.8 5.38 

7 
[−38.5840;  

−31.7485] 

m = −35.3181 

 = 4.8969 
[56.6669; 56.6719] 

m =  56.6692 

 =  0.0037 
52.2 ± 1.3 8.56 

8 
[-53.4664;  

−43.9944] 

m = −48.9408 

 = 6.7857 
[64.7393; 64.7516] 

m = 64.7449 

 = 0.0093 
55.9 ± 2.9 15.82 

m.f. – membership function. 
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rameter  on the distribution of a given quantity de-

scribed as a fuzzy number are provided, for example, 

in the dissertation [26]. This thesis considers different 

computational problems for the cryopreservation pro-

cess applying fuzzy numbers described by triangular 

and trapezoidal membership functions. 

In this study, numerical simulations were performed 

for fuzzy thermophysical parameters described by 

a Gaussian membership function, which is a novel 

approach (in [21], [23], [26] only the triangular and 

trapezoidal membership function are presented). The 

results obtained were compared with those for the trian-

gular membership function (Table 2, Figs. 5, 6). Trian-

gular fuzzy numbers have sharp and linear membership 

boundaries, which makes them easier to implement. 

The Gaussian membership function, on the other 

hand, has smooth boundaries and tends asymptotically 

to zero. Gaussian fuzzy numbers are more complex to 

calculate due to the exponential nature of the member-

ship function. It can be assumed that it is worth using 

them to model probabilistic phenomena. The use of 

Gaussian fuzzy numbers is certainly an interesting ex-

tension of the research topic dealt with by the authors of 

this paper. 

On the other hand, analysing Table 2, discrepan-

cies between numerical results and experimental data 

are noticeable. Referring to previous articles, it can be 

suggested that it is worthwhile to analyse, for exam-

ple, the mathematical model, the calculated values of 

the diffusion coefficient as well as the introduced 

thermophysical parameters. A similar study of cryo-

preservation using the LT protocol and the determinis-

tic thermophysical parameters presents Yu et al. [33]. 

However, Yu et al. in their assumptions determined 

that the extracellular matrix of articular cartilage is 

a porous and isotropic material. As a consequence, 

the diffusion coefficient depends on the properties of 

the porous media, such as the tortuosity. This assump-

tion can consequently lead to more accurate numeri-

cal simulation results. Articular cartilage as a porous 

material is also described in the work of Behrou 

et al. [1], who distinguish the liquid and solid phases 

in the tissue, and explore the effect of temperature on 

its properties. 

5. Conclusion 

The results of a simulated cryopreservation of a bio-

logical sample are presented. The cryopreservation of an 

articular cartilage sample was modelled using the LT 

protocol. This approach allows for the temperature and 

concentration to be controlled in order to avoid the 

formation of ice crystals which would lead to the 

destruction of the biological sample. Due to the im-

precise nature of the thermophysical parameters, they 

were introduced as fuzzy numbers described by a trian-

gular and a Gaussian membership function. It should be 

noted that Gaussian fuzzy numbers do not have the 

sharp interval boundaries that characterise triangular 

numbers. Therefore, the Gaussian membership func-

tion works well for experimental data where the mean 

and standard deviation are known. Triangular and 

Gaussian fuzzy numbers also share common charac-

teristics. Using the -cut concept, the width of the 

interval is widest for  = 0 and narrowest for  = 1 (is 

equal to 0). 

The obtained fuzzy concentrations and tempera-

tures in eight stages of the LT protocol for triangular 

and Gaussian membership functions were compared 

with experimental data taken from the literature. The 

calculated fuzzy temperatures are consistent with the 

temperature values occurring in the LT protocol. Larger 

differences between the experimental data and the 

calculated values are observed for the fuzzy DMSO 

concentration, where the maximum relative error is 

15.82%. It is suggested that this is due to an inappropri-

ate selection of thermophysical parameters or a model 

describing the diffusion coefficient. 
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Appendix 

Sets A
~

 of fuzzy numbers are sets in which each 

element x is assigned a relevant membership function 

[5], [9], [21]: 

 = xxxA
A

));(,{(
~

~ }, (A.1) 

where 
A
~  is the membership function, which takes 

the value from 0 to 1. Fuzzy numbers which belong to 

a set can be described by different membership func-

tions. In our study, the triangle membership function 

described as a straight line and the Gaussian member-

ship function were implemented. 

The membership function for the triangular fuzzy 

number a~  = (a–, a0, a+) is expressed by the relation 

[10], [21]: 
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where a0, a
–, a+ are the core of the number and the left 

and right ends of the fuzzy number, respectively. 

On the other hand, the Gaussian membership func-

tion for a fuzzy number a~ = (ma, a) has the form [14]: 
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where ma, a denote the mean value and standard de-

viation of data set a, respectively. 

The -cut for a given fuzzy set A
~

 is defined as the 

set of all elements A
~

 whose membership function is 

greater than  [5], [10]: 

 = xA {
~
 :   })(~  x

A
. (A.4) 

As a consequence, a fuzzy number is calculated as 

the sum of all α-cuts: 

   AA
~~

]1,0[= . (A.5) 

Then the fuzzy numbers are expressed as closed in-

tervals, where for triangular fuzzy numbers it is given 

as [21]: 

 ])(,)[(~
00

++−− +−+−= aaaaaaa  , (A.6) 

and for fuzzy numbers described by Gaussian mem-

bership function [14]: 

 ].ln2,ln2[~  −+−−= aaaa mma  (A.7) 

 


