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Purpose: The aim of this study was to investigate the feasibility of using Long Short-Term Memory (LSTM) neural networks to predict
Taekwondo kick force from data obtained by inertial measurement unit (IMU) sensors, providing a cost-effective alternative to traditional
force plates in sports biomechanics. Methods: IMU (Noraxon Ultium) data from 13 International Taekwon-do Federation (ITF) athletes
(9 training, 4 validation) across genders and skill levels (expert in training, expert/advanced in validation) were collected. Sensors were
attached to a foot, shank and tight of kicking leg. Athletes performed turning kicks in diverse stances towards a padded force plate (2000 Hz)
attached to a wall. LSTM models were trained to predict kick force value, and trained on capturing the IMU data from sensors placed on
the lower limb. Results: The trained LSTM models showed accuracy on the training data (R2 values in the range of 0.972–0.978). Feature
validity analysis highlighted the importance of ankle dorsiflexion in shaping the model score. Model performance on the validation da-
taset was less consistent, ranging from good accuracy (RMSE 6.91) to poor accuracy (RMSE over 30), depending on the participant
tested. Conclusions: This study demonstrated the potential of LSTM models combined with IMU data to predict Taekwondo kick forces.
Although the validation performance indicated the need for further model refinement or the inclusion of additional input variables, the
results highlighted the feasibility of predicting force values without relying on a force plate. This approach could enhance the accessibil-
ity of field studies conducted outside laboratory settings.
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1. Introduction

Taekwon-do is a dynamic martial art that relies
heavily on complex biomechanical movements [5], [27].
Taekwon-do techniques involve the sequential energy
transfer from larger body segments (hips, torso) to
smaller segments (arms, legs) [3]. Among these tech-
niques, rotational kicks are particularly challenging
because they require precise coordination of spatio-
-temporal parameters such as speed, acceleration and
joint alignment to generate maximum force [11], [23].
Accurate measurement of the force produced during
such kicks is crucial for performance analysis, injury

prevention, and training optimization [25]. Traditionally,
this force is measured using force plates, which, al-
though highly accurate, are expensive, cumbersome and
limited to laboratory environments. Consequently, there
is growing interest in alternative solutions that can
measure or predict kick force in real-world settings [29].

In recent years, statistical computing based on Ma-
chine Learning (ML) has become more accessible due
to the availability of many ready-made libraries. In mar-
tial arts, ML applications mainly focus on two key areas:
(1) using models to detect or predict movement and
combat performance [4], [35], and (2) performing ad-
vanced analysis to discover complex relationships in
sensor signals (treated as time-series data) or to prevent
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injuries [6], [20]–[22]. To support such studies, inertial
measurement units (IMUs) [14] have emerged as a pro-
mising solution for capturing spatiotemporal parameters
of athletic movements. IMUs are lightweight, portable
devices that can record acceleration, angular velocity
and orientation data, making them particularly well-
-suited for biomechanical research conducted outside
controlled laboratory environments.

Two primary approaches can be used to predict de-
sired kinematic variables in martial arts biomechanics.
The first approach utilizes standard descriptive statis-
tics to extract specific features from the acquired data,
followed by predictive modeling using techniques such
as regression analysis, K-Nearest Neighbors (KNN), or
Support Vector Machines (SVM) [13], [14]. The second
approach analyzes the entire time-series data, treating
captured motion and associated variables as signals over
a defined period to predict the target variable. Long
Short-Term Memory (LSTM) models, in particular,
show significant potential for analyzing complete mo-
tion sequences, such as full kick executions, without
the need to manually extract key features [14]. While
LSTMs demand substantial computational resources and
larger datasets for optimal performance, they offer great
promise for applications like kinetic analysis, injury
prediction, and performance optimization. By capturing

temporal dependencies within sequences, LSTMs pro-
vide deeper insights into complex biomechanical move-
ments [1], [34], [36]. Furthermore, inspecting feature
importance within machine learning models is an es-
tablished method for gaining a better understanding of
the data and its underlying patterns [28]. Together, these
approaches highlight the potential of machine learning
to advance biomechanical research and enhance mar-
tial arts training methodologies. This study aims to
evaluate the feasibility of using an LSTM model to pre-
dict the force values of Taekwon-do turning kicks based
on spatiotemporal parameters collected from IMU sen-
sors. Specifically, it seeks to: (1) investigate the deter-
minants of force generation by analyzing the importance

of features within the LSTM models, and (2) evaluate
the model’s predictive performance on data outside the
training set, thereby assessing its potential for practical
applications.

2. Materials and methods

2.1. Participants

The study involved 13 athletes: 9 participants (5 fe-
males, 4 males) provided training data for the model,
while 4 participants (3 males, 1 female) were used for
testing its accuracy on new data (Table 1). All par-
ticipants were master-level athletes with over 5 years of
experience, except for two underage testers (16 years
old, blue belts, advanced level). All participant declared
that they preferred kicking leg is right. Informed consent
was obtained from participants (or their parents in the
case of minors). The study was approved by the Hu-
man Subjects Research Committee of Jan Długosz Uni-
versity (KE-O/4/2022), meeting ethical research stan-
dards.

2.2. Techniques description

The turning kick is a dynamic Taekwon-do tech-
nique relying on angular momentum initialized by core
rotation driven by the hip muscles, transferring torque
through the body to the kicking leg. The knee flexes to
reduce the moment of inertia, allowing for greater angu-
lar velocity, before extending rapidly to maximize foot
velocity. Two variations were analysed:
1. The sports stance – a flexible stance used in sparring,

prioritizes mobility and adaptability with no formal
restrictions, enabling practitioners to adjust their po-
sitioning based on situational demands. The dorsal

Table 1. Characteristics of the participants (mean ± standard deviation, minimum and maximum values)

Parameter Age
[years]

Body mass
[kg]

Body height
[cm]

Age
[years]

Body weight
[kg]

Body height
[cm]

Female Model (N = 5) Outside (N = 1)
Mean ± SD 28 ± 5.34 64.2 ± 6.5 163 ± 7.21 16 63 169
(Min, Max) (24, 37) (57, 72) (152, 170)
Male Model (N = 4) Outside (N = 3)
Mean ± SD 29.3 ± 9.18 77 ± 8.12 180.3 ± 1.71 17.3 ± 2.31 70 ± 4.36 176.7 ± 4.51
(Min, Max) (24, 43) (72, 89) (178, 182) (16, 20) (67, 75) (172, 181)
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foot (instep) is typically used as the striking surface
for the turning kick [30];

2. The traditional stance (L-Stance or Niunja Sogi in
ITF Taekwon-Do) – an “L”-shaped stance used for
power-breaking. The front foot points forward, the
rear foot is perpendicular, and the back heel aligns
with the front instep. This stance allows for greater
torso rotation, critical for generating power in strikes
and kicks. Typically used in board-breaking dem-
onstrations, it prioritizes maximum force, with the
plantar foot (sole) as the striking surface [30].

2.3. Setup and protocol

A combined method was used to measure impact
forces and segment kinematics during kicks. A padded
force plate (AMTI, model MC12-2K, 2000 series,
Watertown, MA, USA) served as the target, measuring
ground reaction forces in three dimensions synchronized
with a motion capture system (Noraxon, MR 3.18,
Scottsdale, AZ, USA) for precise timing.

For kinematic analysis, three wireless Inertial Meas-
urement Units (IMUs) – Noraxon Ultium (2000 Hz,
400 g) were placed on the kicking foot (the lateral mal-
leolus), shank, and thigh. Both devices data transfer was
synchronized using add-on MyoSync, responsible for
data synchronization and integrity of signals over time.

After a 10-minute warm-up of dynamic stretches and
shadow kicks (kicks performed without a target), sensors
were attached, and participants performed five maxi-
mal kicks per condition with one-minute rest intervals
and alternating legs. Each participant completed 40 kicks
(5 reps × 4 conditions × 2 legs). Thus, the data set in-
cluded 90 strikes per technique (9 participants × 2 legs
× 5 strikes). Validation involved predicting 40 strikes
for the sports kick and 30 for the traditional version,
ensuring minimal fatigue or learning effects.

2.4. Data collection

For each participant, five strikes per kicking tech-
nique were recorded. Data from the Noraxon MR 3.18
system (with MyoMotion module) was exported to Ex-
cel in *.slk format, then converted to *.xlsx for analy-
sis. Using Python libraries (pandas, numpy, matplotlib,
scipy), acceleration data was processed, converting units
from milli-g to m/s². Force peaks were detected (thresh-
old: 300 N), and filtering isolated the kicks. Each peak
was segmented within a 200 ms window before and
after the maximum force value. Data were visualized,
summarizing event times, peak forces, and resultant
accelerations, with individual events saved for further
analysis (Fig. 1).

Excel (.xlsx) files containing acceleration and time
data were processed to calculate velocity for each sensor
axis using a custom compute_velocity function. The up-
dated files, including velocity columns, were saved and
used for model input or testing. Strike events were iden-
tified using a 12 m/s2 acceleration threshold, and key

parameters (strike duration, peak force, accelerations,
velocities) were extracted if conditions were met. Results
were compiled into a DataFrame for analysis, de-
scriptive statistics and model validation. The code is
available on GitHub (https://github.com/Dareczin/tkd_
data_preparation_slicing_for_events).

2.5. Model architecture

This study used an LSTM network to predict the
maximum ground reaction force (GRF) from sequen-
tial sensor data. Inputs included standard accelerome-
ter features, along with derived metrics like resultant
acceleration and velocity. The model featured three
stacked bidirectional LSTM layers with 50 hidden units,

Fig. 1. Visualization of peak detection using a sliding window for event segmentation
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capturing complex temporal patterns. Dropout regulari-
zation (0.3) was applied to reduce overfitting.

Training used the Adam optimizer (learning rate:
0.001) with Mean Squared Error (MSE) as the loss
function. An 80/20 train–test split was applied, and the
model was trained for 20 epochs with a batch size of 8
to optimize memory usage (32 GB RAM). The trained
model and feature scaler were serialized for future pre-
dictions. Feature codes, detailed in Table 2, follow nam-
ing conventions established by the lab, starting at 2.

After training, the model’s performance on the test
set was evaluated using the R2 metric. The model was
set to evaluation mode, predictions were generated,
and the R2 score was calculated. Four models were
created for separate kick-stance pairs using the same

code, each run in Jupyter Lab v. 4.11. In Figure 2, the
process and algorithm are illustrated.

Feature importance analysis was performed on the
baseline model by shuffling feature values and running
100 iterations to compare average importance weights
across techniques. The baseline R2 was calculated on the
original test set. Then, each feature was permuted indi-
vidually, while others remained unchanged. The drop
in R2 after each permutation indicated feature impor-
tance, with averages computed similarly.

Model verification used external data from partici-
pants excluded from training. Predictions involved load-
ing the model, selecting the same features, and excluding
Total_GRF (force). Each event was processed sepa-
rately, and predictions were compared to actual force

Table 2. Overview of the 24 selected features and their descriptions,
where x denote anteroposterior direction, y denote mediolateral direction, z – longitudinal direction

Feature name Description
2x, 2y, 2z acceleration along each axis of the foot sensor
3x, 3y, 3z acceleration along each axis of the shank sensor
4x, 4y, 4z acceleration along each axis of the thigh sensor
resultant_acceleration_1 resultant acceleration from 2x, 2y, 2z foot sensor
resultant_acceleration_2 resultant acceleration from 3x, 3y, 3z shank sensor
resultant_acceleration_3 resultant acceleration from 4x, 4y, 4z thigh sensor
velocity_2x, 2y, 2z velocity computed from 2x, 2y, 2z foot sensor for each axis
velocity_3x, 3y, 3z velocity computed from 3x, 3y, 3z shank sensor for each axis
velocity_4x, 4y, 4z velocity computed from 4x, 4y, 4z thigh sensor for each axis
resultant_velocity_1 resultant velocity computed from velocity_2 axes
resultant_velocity_2 resultant velocity computed from velocity_3 axes
resultant_velocity_3 resultant velocity computed from velocity_4 axes

Fig. 2. Flowchart of the model development process with parameter configuration
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values for specific kicks. Accuracy was evaluated using
RMSE for individual participants and the overall dataset.
All models and the corresponding dataset are available
on the Zenodo open repository at https://doi.org/
10.5281/zenodo.10895668.

3. Results

3.1. Descriptive statistics of kicks

Descriptive statistics for two techniques in both
styles, based on data from nine participants included
in the model is provided in Table 3. Since gender was
not a factor in the analysis, no division by gender was
necessary. The table presents indices recorded at the
moment of peak force, which is the model’s target pre-
diction value. This data offered a reference for analysing
feature importance and understanding how specific vari-
ables influence the model, including the impact of per-
formance variability on training.

The lowest force values were recorded for the turn-
ing kick from a traditional stance, with a mean of
1427.89 N. Interestingly, in this variation, the IMU data
from the thigh exceeded that from the shank, a dis-
tinctive observation. In comparison, the traditional
stance generally showed lower statistical values than
the sports stance, which had a mean force of 2004.71 N.
Although the mean force difference between the two

styles was notable, the range of minimum to maxi-
mum values was considerably smaller.

3.2. Model evaluation
with permutated feature importance

3.2.1. Turning kick in sport version

Each model was evaluated independently, begin-
ning with the turning kick in the sports version. The
LSTM model for force prediction achieved a strong base-
line R2 score of 0.972. Permutation importance analy-
sis identified key velocity-related features, such as the
vertical and rotational components of thigh velocity
(“velocity_4y” with a drop to 0.773 and “velocity_4z”
with a drop to 0.837) and the resultant velocity of the
shank (“resultant_velocity_2” with a drop to 0.763),
as critical for accurate force predictions. These fea-
tures caused substantial declines in the R2 score when
permuted, highlighting their significance. Addition-
ally, acceleration features such as “3x” (drop to 0.860)
played a notable role. Whereas features such as “2z”
(0.962), “3z” (0.914), and “4z” (0.918), representing
accelerations along the z-axis, exhibited minimal im-
pact on R2 scores when permuted (Fig. 3).

3.2.2. Turning kick in traditional version

The next model focused on the turning kick in the
traditional version, achieving a high baseline R2 score

Table 3. Descriptive statistics for the model participants across all kick variations
performed at maximal force (Max Force), including mean ± standard deviation,

as well as minimum and maximum values.

2 Mean ± SD (Min, Max)

Turning kick in sport stance version
Max Force [N] 2005 ± 820 (625, 4228)
Foot acceleration [m/s2] 142.06 ± 60.56 (30.01, 295.52)
Shank acceleration [m/s2] 52.93 ± 22.31 (16.26, 136.50)
Thigh acceleration [m/s2] 60.95 ± 35.78 (12.24, 196.32)
Foot velocity [m/s] 12.53 ± 3.84 (5.40, 21.00)
Shank velocity [m/s] 8.42 ± 2.16 (4.18, 14.80)
Tight velocity [m/s] 8.03 ± 2.75 (1.47, 14.57)

Turning kick in traditional stance version
Max Force [N] 1428 ± 566 (513, 3942)
Foot acceleration [m/s2] 134.15 ± 65.54 (37.54, 305.44)
Shank acceleration [m/s2] 42.77 ± 13.65 (11.00, 69.59)
Thigh acceleration [m/s2] 61.39 ± 36.81 (17.77, 177.33)
Foot velocity [m/s] 10.91 ± 4.12 (2.49, 19.03)
Shank velocity [m/s] 7.45 ± 1.70 (4.20, 10.64)
Tight velocity [m/s] 7.60 ± 2.50 (2.89, 15.40)
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of 0.978. Permutation importance analysis identified
several key features, with “resultant_acceleration_1”
showing the largest drop in R2 score (to 0.711) when
permuted, emphasizing its critical role in accurate force
predictions. Additionally, “resultant_velocity_1”, which
was linked to acceleration data, also displayed a notice-
able drop (to 0.827). Another important feature was the
rotational axis of the shank sensor’s acceleration data
“3x”, which dropped to 0.854. Compared to the sports

version, this model exhibited fewer features with sig-
nificant drops in R2 scores (Fig. 4).

3.3. Descriptive statistics
for outside model participants

The available data for testing involved 4 participants,
with data from only 3 participants being usable for the

Fig. 3. R2 scores for each feature after 100 permutation runs in the kick model (sport version)

Fig. 4. R2 scores for each feature after 100 permutation runs in the kick model (traditional version)
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turning kick in the traditional version. Descriptive sta-
tistics revealed similar trends in the switching of accel-
eration/velocity order for the traditional version of the
turning kick, compared to other conditions, which
aligned with the data from the model set (Table 4).

Table 4. Descriptive statistics of kicks
for outside model participants across all kick variations

performed at maximal force (Max Force),
including mean ± standard deviation,

as well as minimum and maximum values

Variable Mean ± SD (Min, Max)

Turning kick in sport stance version
Max Force [N] 1548 ± 573 (656, 3179)
Foot acceleration [m/s2] 107.72 ± 41.03 (48.60, 189.18)
Shank acceleration [m/s2] 62.45 ± 5.91 (27.03, 201.85)
Thigh acceleration [m/s2] 74.40 ± 57.51 (26.94, 228.02)
Foot velocity [m/s] 11.35 ± 3.07 (6.61, 16.15)
Shank velocity [m/s] 9.56 ± 2.08 (6.47, 15.35)
Tight velocity [m/s] 8.59 ± 3.72 (4.41, 18.82)

Turning kick in traditional stance version
Max Force [N] 1631 ± 1182 (545, 5503)
Foot acceleration [m/s2] 62.51 ± 14.31 (27.49, 82.35)
Shank acceleration [m/s2] 77.29 ± 32.19 (36.71, 135.72)
Thigh acceleration [m/s2] 91.32 ± 58.34 (27.76, 197.33)
Foot velocity [m/s] 8.82 ± 1.24 (6.75, 11.64)
Shank velocity [m/s] 9.83 ± 2.21 (6.98, 14.08)
Tight velocity [m/s] 10.57 ± 4.14 (5.89, 17.55)

3.4. Model performance
for outside model participants

The comparison between observed Max Force val-
ues and model predictions showed varying accuracy
across participants and trials (Table 5). Participant 1
exhibited strong performance, with RMSE values be-
low 50 N, indicating minimal errors. In contrast, Par-
ticipant 2 had larger errors, with RMSEs exceeding
100 N in some trials. Dynamic tasks, like Participant
3’s trial with a Max Force of 3031 N, led to significant
prediction errors of nearly 2000 N (RMSE = 38.3).
Participant 4 showed RMSE values over 20, highlighting
the need for model improvement. In the traditional
stance, turning kicks varied in RMSE, reflecting fluc-
tuations in model accuracy. For Participant 1, dy-
namic scenarios like the right-leg kick showed large
prediction errors, with a true Max Force of 5502 N
predicted as 1582 N (RMSE > 41). Participant 2 had
moderate errors (RMSE between 30.9 and 31.8). Par-
ticipant 3 displayed smaller RMSE values in low-force
trials but significant overestimations in high-force cases,

such as a true Max Force of 931 N overestimated by
over 700 N (RMSE = 27.2).

Table 5. Model performance for each participant and condition,
presented separately

Participant Side Mean true
values [N]

Mean
predictions [N] RMSE

Turning kick in sport stance version
left 1573 1620 6.91

1
right 2703 1465 38.27
left 867 1915 32.37

2
right 1780 2094 17.71
left 1399 2028 25.08

3
right 1535 1320 14.64
left 1125 2008 29.72

4
right 1475 2098 25.62

Turning kick in traditional stance version
left 1553 1502 7.18

1
right 3321 1603 41.45
left 1172 1013 31.83

2
right 1030 1986 30.92
left 759 584 13.23

3
right 888 1630 27.23

4. Discussion

This study aimed to evaluate the feasibility of using
an LSTM model to predict the force values of Taek-
won-do turning kicks based on spatiotemporal parame-
ters collected from IMU sensors. Specifically, it sought
to: (1) investigate the determinants of force generation
by analyzing the importance of features within the
LSTM models, and (2) evaluate the model’s predictive
performance on data outside the training set, thereby
assessing its potential for practical applications.

LSTM models are currently used for predicting dif-
ferent variables related to martial arts for movement
prediction [12] or health-related properties of a wider
spectrum [19]. As this type of analysis is quite new,
there are not any papers that directly reflect this work.
Existing models aim to recognize specific techniques
based on kinematic data. The paper of Barbosa, et al. [2],
reveals high accuracy of movement recognition in Taek-
wondo techniques with the value of accuracy 0.991
[2]. This value corresponds to the accuracy of the
model obtained in this study in values ranging from
0.972 to 0.984. This is outside justification of method
correctness, at least at the starting point of this model.

The analysis of external model data often proved in-
accurate. The turning kick in the sports version showed
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the best performance, with the lowest RMSE values.
However, predictions missing over 1000 N in a range
of 600–4300 N fail to meet the goal of practical train-
ing applications, aside from the force plate’s immobil-
ity issue. Despite limited comparable studies, we discuss
potential reasons for this lack of accuracy. Only one
participant demonstrated that predicting force without
a force plate might be feasible, suggesting this ap-
proach holds future potential.

Participants in the new dataset differed in age and
experience from those in the trained sample, which, in
traditional research, would be unacceptable due to the
importance of homogeneity for comparison. However,
for the model’s practical application, it must adapt to all
training participants, not just those resembling the
trained sample. Participant 1, a master-level athlete,
initially aligned well with the model but displayed un-
expected variability. His exceptionally powerful right-
leg strikes altered the time-series data patterns, leading
to poor predictions. This outcome was unforeseen, as
initial indicators suggested compatibility. From previ-
ous studies, Taekwon-do martial arts did not exhibit
specific lateralization between lower limbs in their
strikes [31].

Other participants were less experienced and younger,
which could have led to differences in kick kinemat-
ics. If their coordination differed, the LSTM model
might have been sensitive to these variations. Since
the bidirectional LSTM model relies on both forward
and backward relationships between features proc-
essed as signals in windows, any irregular fluctuations
compared to the trained data could result in prediction
errors. This hypothesis is supported by previous stud-
ies that have explored differences in the kinematics of
the turning (roundhouse) kick between novices and
experts. These differences were not only observed in
muscle activation but also overall kinematic metrics,
including the generated force [23].

Participants had the freedom to adjust their distance
from the target independently, particularly in the sports
stance. Numerous studies have highlighted the impor-
tance of distance in turning (roundhouse) kicks [7],
[9], [10], [15]. Variations in distance are related to the
concept of effective mass, which refers to the utiliza-
tion of one’s body mass in generating force. Insuffi-
cient distance or poor timing at the moment of contact
with the target can lead to a decrease in the generated
force values [17], [18], [32].

The first model explored was the turning kick in the
sports version. None of the individual axis accelera-
tions showed a significant drop in R2 scores; however,
the most important determinants, according to the
permutation feature analysis, were the resultant accel-

eration of the shank (resultant_acceleration_2) and the
acceleration of the thigh (resultant_acceleration_3).
Since this is a circular motion, the non-linearity of the
kick may explain the lack of dominance of a single
axis, with the overall acceleration of these segments
being crucial. Therefore, developing strong flexion
strength in the hip and knee joints is recommended for
this kick, which aligns with findings from Moreira et
al. [26], where isokinetic strength in these areas was
also shown to be important. In contrast to previous
studies on the effects of target kinematics [16], [33],
maximum foot velocity was not a critical factor for
overall performance based on its resultant values. How-
ever, when analyzing the data for each axis separately,
the vertical component of foot velocity emerged as
important. This highlights the significance of foot
dorsiflexion speed in generating kick force. It is rec-
ommended that athletes focus on strengthening the
tibialis anterior muscles to enhance dorsiflexion speed
as a key factor in improving kick power.

The permutation feature analysis of the second
model reveals noticeable differences in the R2 scores
of selected features, supporting the need for separate
analyses of the two stances. The primary difference in
the traditional version lies in the contact area with the
target. Since the plantar side of the foot in the metatarsal
joint region strikes the shield, the foot must be fixed in
position before contact, leading to different kinematics
at the end of the technique execution. In this model,
the most important determinant was the resultant accel-
eration of the foot (resultant_acceleration_1), suggesting
that the timing of foot position fixation is crucial for
predicting the force of the kick. As a practical appli-
cation, trainers could use high-speed cameras (e.g.,
100 frames per second or higher) to assess the timing
of ankle movements during this technique. Feature
importance analysis does not equate to correlation, so
we cannot directly conclude that later fixation leads to
a stronger impact. In this model, shank velocity and
acceleration were less important, but the kinematics of
the segments remained significant. This challenges the
assumption of a proximal-to-distal pattern being cru-
cial for the turning kick in ITF Taekwondo athletes
[8], [24].

Limitations of the study

The permutation feature analysis highlights im-
portant technical nuances that trainers should consider
during motor learning. While it identifies key compo-
nents influencing force predictions, it also reveals the
model’s limitations with the current sample, which or-
ders us to be cautious about strength of those evidence.
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Testing on new data suggests that the model is not suit-
able for general use, possibly due to the small sample
size of nine participants or the need for refinement
based on permutation analysis insights. Higher sample
size of testing data outside the model would also help
to better understand which group is suitable for using
this models, as single successful assessments indicate
that there might be a profile of athletes that could utilize
this solution. Expanding the feature set, using sliding
windows, or adjusting model parameters could improve
performance, but computational constraints, such as
a 32 GB memory limit of device used for training
models, restrict batch sizes and cause system errors.
These limitations emphasize the need for further opti-
mization and larger datasets. Additionally, using more
number of sensors could fill the gap in prediction abil-
ity of proposed models.

The key takeaway from this paper is that it is in-
deed possible to train an effective model to predict the
force of a kick without the need for a force plate. The
main objective of this study has been achieved, and
we aim to promote the idea of eliminating stationary
equipment for sports analysis conducted outside of
laboratory settings.

5. Conclusions

This study rigorously evaluated the capability of
Long Short-Term Memory (LSTM) models to predict
the force of Taekwon-do kicks using inertial measure-
ment unit (IMU) data. The LSTM models demonstrated
impressive predictive performance, with R2 values rang-
ing from 0.972 to 0.978 across different kick stances.
This suggests a high level of accuracy in capturing the
nuanced dynamics of Taekwon-do techniques.

Feature importance analysis pinpointed specific
kinematic variables – particularly the velocity of the
thigh and the rotational velocity of the shank – as key
determinants of kick force. These insights offer action-
able guidance for technique optimization, highlighting
the importance of both segmental velocities and ac-
celeration patterns of the ankle joint motion in gener-
ating powerful kicks.

While these findings are encouraging, the model’s
predictive accuracy was less consistent when tested
with data from new participants. Differences between
predicted and actual force values, highlighted by RMSE
values, indicate limitations in generalization across
a broader athlete spectrum.

Future research should focus on addressing these
limitations by expanding the training dataset, refining

model architecture, and incorporating a wider array of
kinematic and kinetic variables. These advancements
hold the potential to significantly enhance the predic-
tive power and broaden the applicability of the model
across various sports biomechanics applications.
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