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Modelling of pulsatory flows in blood vessels
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The paper deals with the method of modelling of blood pulsatory flow in the vessels of circula-
tory system. The method is based upon the solution of wave equation applied in the theory of four-
pole. In a graphic presentation of a vessel of distributed parameters, a model of bond graphs with
new elements of DB type ise used. Basic physiological simulation experiment using bond graphs was

performed. The aim of the experiment was to model the changes of pressure and volume in a left
heart-aorta segment.
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Notations

a - velocity of wave propagation,
r—blood vessel’s coordinate,

r, — radius of blood vessel,

P — pressure,

v - velocity of flow,

z — cylindrical coordinates,

A — area of blood vessel’s internal section,
C - vessel compliance,

C, - vessel’s segment compliance,

E - Young’s modulus,

I - inertia resistance,

I, vessel’s segment inertial resistance,
J,,J,—Bessel’s functions of the first kind,
N(s) - viscosity function,

Q - flow rate,

R — viscosity resistance of blood vessel,
T - time constant,

Z, - vessel’s segment impedance,

& — wall thickness,

71— dynamic viscosity coefficient,
v—kinematic viscosity coefficient,
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v, — Poisson’s ratio,
p — density,
Az - length of vessel’s segment.

1. Introduction

Difficulties in modelling of the circulatory system arise mainly due to informa-
tion, calculation and measurement problems connected with, for example, represen-
tation of the arteries’ elasticity, pulmonic and peripheral resistance, geometry of the
circulatory system, blood viscosity and pulsatory flow. Modelling of blood flow in
blood vessels requires some simplifying assumptions. On the basis of these assump-
tions blood vessels are treated as elastic tubes of axial-symmetric shape subjected
to forces affecting the organism [5]-[9], [11], [12]. The following basic, easily ac-
cessible information is used in modelling of the circulatory system: size and me-
chanical properties of blood vessels, pressure changes in the left and right ventricles
of the heart, pressure and flow intensity, changes in particular segments of arteries.
Numerous theories concerning blood flow have been proposed, particularly those
by Wamerley, McDonald [6], Rideout, Dick [7], Rudinger [13] and Skalak [14]. Digi-
tal and physical models of the circulatory system find practical applications in bio-
medical engineering, diagnostics and education as they are based on the laws and
principles of fluid mechanics used in technical systems. Such models are used to
examine the systems supporting heart operations, artificial valves and heart ventricles.
They are also used to diagnose pathology, predict the operation results and to ex-
amine hemodynamic processes in blood vessels. The parameters of medical devices,
for example of the apparatus supporting heart operations, can be determined by means
of a digital model of the circulatory system. Most of the formulae presented in this
paper can be used for rough calculation of flow intensity, pressure, velocity, flow
resistance or susceptibility of vessels. The results of rough calculations are adapted
to the actual values on the basis of measurements and model testing. The digital
model represents physical relations by an algorithm into which actual parameters
of a physical model or technical device can be given. The physical model is used in
in vitro research as an hydraulic simulator.

2. Modelling of pulsatory blood flow

A simplified rheological model of blood represented by a Newtonian fluid de-
scribed by Navier—Stokes’s [2] equation is considered:

p‘fl_':=—gradp+pq+nv2v +(§+§n]graddivv- )
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Since blood is treated as a non-compressive fluid, it is assumed that div v =0 and
that density is constant: p = const. The volumetric force (component pq) is excluded
from our considerations. Further simplifications apply to velocity and pressure dis-
tributions in the radial direction in the pipe of constant cross-section. Taking all the
assumptions into account we represent equation (1) as one equation of fluid motion:

Jv, dp 3%, 109v,
s WL T B i Y 2
Po¢ 3z+n(8r2+r3r @

Next, equation (2) is transformed into general form [6], [5], [9]:

a_p+8_n +L3_Q=O. (3)

a 2
dz mry mrl Ot

Assuming a linear pressure distribution along the blood vessel:

3_1’ = P2 "
az Az
equation (3) can be rewritten as:
dg
I—=+RQ=p,-p,> ©)
5 Q=p—-p;
where:
R=812%,
nr,
1=£%
nr;

Equation (2) after Laplace’s transformation is used to model the flow of distrib-
uted parameters [3]-[5]:

sQ(z,S)N(s)+éM =0, )]
p dz
where:
A=nr?
AT

N(s) = 6)

Jo(yr) ’
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‘y:jJE. (7)
Vv

The second equation used in modelling of pulsatory flow is the equation of conti-
nuity of non-compressive fluid flux in cylindrical coordinates:

dv, Loy v, _
dr r 0dz
By substitution of v,= Q/4 and dv, /d r = v,/ r, resulting from linear dependence

v, = f(r) for boundary condition r = r,, equation (8) takes the form [4]:

0. ®)

r, nry 02

)

If we consider a blood vessel of isotropic, elastic and homogenous walls strained
according to Hooke’s law then for the boundary condition r = r the change of pres-
sure in the artery can be written as follows [2]:

»__ ES
ot (l—vrz)ro2 ’ (10

Since it is assumed that for a blood vessel wall Poisson’s ratio v, = 0.5 [12], equa-
tion (10) has the form:

L, (1)

By introducing the velocity v,, resulting from equation (11), into equation (9) we
obtain the equation of flow continuity for length unit of the blood vessel:

3
dz 2E6 ot
Since ¢ = 3/2 equation (12) takes the form [11]:

(12)

00 mrlop
— 2. —=0.
oz CES o

(13)
By approximating:

90 _0,-9
0z Az

and assuming:
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9P _d
ot dt
from equation (13) we obtain the following relation:
dp
C—=0,-0,, 14
i - (14)
where:
3
nr, Az
C=c—2—. 15
“"Es =

Equation (8) after Laplace’s transformations for zero initial conditions is also used
to model the flow of distributed parameters [13]:

dQ(z,s)
dz

where [ is a constant coefficient connected with vessel compliance:

+ Bsp(z,5)=0, (16)

)

Ed

After differentiating equation (16) by z, and taking into account the relation dp/dz
determined from equation (5) we obtain wave equation:

)

7 —a—zN(s)Q=0, (18)
where:
A
= |—. 19
¢ pB S8

The general solution of equation (18) has the form:

0(z,5)=cie” +ce™” (20)
where:
¢,, ¢, — constant coefficients,

p .
X — power exponent, x = —Z,/N (s) .
a

After differentiating equation (20) by z and inserting it to formula (16) a general
equation for pressure change in the vessel is obtained:
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p(z,5) = -%,/N(s) [cle" —cze_x]- (21)
By assuming boundary conditions for z= 0 thatis x=0,p=p, and 0 = Q,, and

for z=1Ithatis x= st JN(s) , p=p, and Q= Q,, and by determining the integra-
a

tion constants ¢, ¢, from (20) and (21), and introducing hyperbolic functions cosh
and sinh, the dynamic model of parameters distributed on the length / of the vessel’s
segment, calculated from equations (20) and (21), takes the form:

p2(s) = cosh(yNG)Ts Jpy () - Z, N ()sinh (N ) Ts )@y (5),

Qz(s)=_z+/ms_)sinh( NG)Ts )py(s) +cosh(N®Ts)(s),  (22)

1

where:
T= IIC[ s
I
Zl = L )
G
Il =p_l2a
nr,
3
nr; 1
C — [
'"ES

The matrix-vector equation of the vessel’s segment finally takes the form:

[” 2“)] =G, [p ‘(s)], (23)
0,(s) 0, (s)

where G is the matrix transmittance of vessel’s segment:

cosh( N(s)Ts) —Z,JN(s)sinh(JN(s)Ts)
———l——sinh( N(s)Ts) cosh( N(s)Ts)

Z, ,/N(s)

G, = (24)
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3. Application of bond graphs

In the pulsatory systems, the elements of two input and two output parameters in
the form of four-poles are considered. In the four-poles theory, the wave equation is
solved by matrix-vector equation (23). Since the method of modelling the pulsatory
flow by bond graph is used for each ith segment of blood vessel, the pressure p and
the flow intensity Q on its input and output are specified:

X = G X, (25)
where:

X,,, —input vector from the ith segment, X;,, = [pm ] ,

i+l

X, — input vector to the ith segment, X; = [p;] ;
: i
G, — transmittance of the ith vessel’s segment.
For the vessel consisting of n segments the equation takes the form:
Y =GU, (26)
where:

Y - output vector, Y = [Py :l i

U — input vector, U = [g“ ] ,

G — vessel’s matrix transmittance,

G=]]G,U. (27)
i=1
Since the dynamic model of each ith vessel’s segment is described by different
elements of bond graph (type 0, 1, TF, MTF, and also a new element DB), its G;
transmittance can be written as the product of elementary matrixes H;

G;=[]H;, (28)
J

where H;; is a matrix of the jth element of bond graph belonging to the ith vessel’s
segment.
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In figure 1, the bond graphs for the vessel’s segments of concentrated and dis-
tributed parameters are compared. The matrix function G for vessel’s segment of
distributed parameters is represented in the bond graph by a new element DB (double
bond). The element DB is represented by a double line (cf. figure 1c). In this graph,
the impedances Z, and Z, are marked at the beginning and end of the blood vessel.

o

p||Q| plez
b) c)
I f Z Z2
p! \ITL N o Py —%17“1" Gs ‘1 P2\
Qi L Q: l Qi ! Q2 !

Fig. 1. Segment of blood vessel (a) bond graphs for its model of concentrated
parameters (b) and distributed parameters (c)

Now we will consider a model of the vessel’s segment of constant pressure distribution
p and flow intensity O, but with laminar resistance of flow R: R = R, = R, =R/2 con-
centrated on both ends of the vessel. In this case, after leaving out the viscosity func-
tion N(s), on the basis of bond graph presented in figure 2 the equation for a model
of blood vessel’s segment can be written:

1) Dy
=H ;H ,H
I:Q2:| $3 3520051 [Q[]

1 0| cosh(Ts —Z;sinh(T's
4 : (Ts) nEa) g ~Ri || py
—— || -—sinh(Ts)  cosh(Ts)

2 Z,
G, G
= i [" ‘], 29)
sz G22 Ql

G| =cosh(Ts),

where:



Modelling of pulsatory flows in blood vessels 23

Ri R2

Fig. 2. Bond graph of a model of blood vessel segment
of distributed parameters and local flow resistance

G}, = —[R, cosh(T's) + Z, sinh(T’s)],

G = ‘l:iCOSh(TS) + isinh(Ts)] ,
R2 ’ Zl

G3, =2cosh(T's) +(ﬁ - ﬁ)sinh(Ts) :
R, Z,

From equation (29) the impedance Z(s) of the vessel’s segment, which is the mea-
sure of the total resistance of blood flow, is determined. For a model of the vessel of
distributed parameters the vessel impedance can be determined in the operational form
Z(nw) (where s = jw). It is developed into Fourier’s series and the sum of imped-
ances is obtained:

Z(nw) = 202
Q(nw)

The component Z(0) is connected with the steady flow, other components are re-
lated to pulsatory flow. The vessel impedance Z(nw) is a composite function of time
and frequency. The frequency f= w/2n corresponds to the frequency of heart work,
while the frequencies 2fand 3f, etc, are successive harmonics of the pulse wave. Since
equation (29) has four unknowns the relation R = p,/Q,, in which R is flow resis-
tance at the end of vessel, must be taken into account. Such resistance influences the
wave reflection in the vessel:

e for R>Z; (k= p,/p, > 0 and ¢ = Z/R < 1) the positive reflection of wave is ob-
served,

s forR<Z,(k=p,/p, <0and ¢ = Z/R > 1) the negative reflection of wave is ob-
served (where £ is reflection coefficient, and ¢ is vessel’s resistance coefficient).

Thus, substituting p, = RQ, into formula (29) the formula for vessel’s segment
impedance Z(s) is obtained:

=Z(0)+ Z(0) + Z2w) + -+ Z(nw) . (30)
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pi(s) _RGy» -Gy -

_ 3¢+ (292 +1)tanh (Ts)
Qi(s) G, -RG; .

Z.(s)=
= 202 + ¢ tanh (Ts)

Z; (31

Z,(jw)

From formula (31) the spectral impedance —=
1

is obtained. From the spec-

Z,(jw)

tral impedance the modulus | 2

! !
They are used to determine the resonant characteristic of blood vessel for different

frequencies of heart work.

and the argument ar; —Z—‘g—w—)J are derived.

4. A physiological simulation benchmark experiment
using bond graphs

This paper presents a classical model of the human blood vessels, which are part
of the circulatory system, a good example of a non-linear continuous system. The
model components used to simulate human circulatory system are best described in
terms of physiological elements that they represent. Some of the systems that consti-
tute the human body are in direct contact with the cardiovascular system, while the
others are not. The circulatory (i.e. cardiovascular) system can be divided into three
distinct parts: pulmonary (small) circulation passing blood to the lungs, systemic
(large) circulation providing the rest of the body with blood and the heart with its
own vasculature (coronary circulation). Heart plays a role of the double pump (“right
heart” and “left heart™). One pump collects the blood (through venae cavae) from the
periphery and passes it into the lungs to become there oxygenated (“right heart”).
The other one collects the oxygen-rich blood from the lungs and passes it back to the
periphery through aorta (“left heart”). The systemic circulatory system was divided
into four subsystems: arms, head, trunk and legs. The scheme of the model of the
circulatory system is shown in figure 3. Each of the model elements (head, lungs,
right heart, left heart, vena cava, arms, aorta, legs, trunk) has four basic input pa-
rameters used for describing its characteristics. Two of these parameters (R — resis-
tance in mm Hg/cm?/s, C — compliance in cm*/mm Hg) are key elements of the basic
blood flow components. Each of the model elements also has basic output param-
eters. Three of these are characteristic of blood flow (p — pressure in mm Hg, Q -
flow rate in cm®/s, ¥ — volume in cm?). Parameter Control Centre (PCC) assigns val-
ues to changing parameters in the simulation model presented in the table.

Blood volume corresponds to the ¥, term for each of the n subsystem

Vo =Voo = I(Qn = Qu1)dt . (32)
0
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Fig. 3. Scheme of the model of the human circulatory system: A — aorta, H — head,
L — lungs, Li - liver, Le — lien, LA — left arm, LH — left heart, LL — left leg, P — pericardium,
RA - right arm, RH — right heart, RL — right leg, T — trunk, VC — vena cava

Output pressure corresponds to the p, term for each of the n subsystems

1

P, C AV, . (33)

Simulation model is based on the same assumptions as all basic classic models,
i.e. blood without mass, blood flow modelled as a Newtonian fluid, organs and blood
vessels having linear compliance, heart valves that close immediately, lumped body
systems. The application of bond graphs in modelling of pulsatory blood flow in LH-A
(left heart—aorta) subsystem is presented in figure 4. LH model favours the left ven-
tricle, ignoring the lesser flow effects in the left atrium. The mitral and aortic valves
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Fig. 4. The LH-A (left heart-aorta) subsystem (a) and its bond graphs (b)

stop the flow to and from the left ventricle, respectively, when the pressure difference
across the valve becomes negative (i.e. they are unidirectional valves that prevent
backflow; mitral valve controls blood flow from the left atrium into the left ventricle;
aortic valve controls blood flow from the left ventricle into the aorta; ventricles —
two chambers at the bottom of the heart that form a pointed base, main pumping cham-
bers). Blood temperature is assumed to remain unchanged in the heart. Input resis-
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Fig. 5. Plots of volume ¥, and pressure p, data for the left heart

tance of the aorta is equivalent to the output resistance of the right ventricle. Output
resistance of the aorta is equivalent to the combined input resistance of the arms, head,
trunk, and legs. The simulation of the circulatory system was conducted by means of
a Simulink and 20sim Performance Tools adapted to the structure of the bond graphs.
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Fig. 6. Plots of volume Vj and pressure pg data for the aorta

The plots of pressure and volume data for the left heart are presented in figure 5, and
plots of pressure and volume data for the aorta are presented in figure 6. The time
range covered is 20 sec.
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Table. Changing parameters in the simulation model [15]

29

Elements of R R c v

circulatory | |11 Holembs] (Bl | [eadimmbe] [cm?]
system

Right heart 0.011 0.0128 75 150
Lung 0 0.1429 7.519 120
Left heart 0.0125 0.0588 80 150
Aorta 0 0 1.25 100
Arms 10 515 4.25 280

Head 5 2.58 1.21 80
Trunk 1.42 0.67 34 2250
Legs 5 2.58 11.1 730
Vena cava 0 0 250 500

5. Conclusions

The paper deals with modelling of pulsatory flow in blood vessels on the basis of
the laws and principles of fluid mechanics used in technical systems. The analogies
and principles of hydrodynamic similarities are applied. In modelling of pulsatory
flow, the matrix-vector equation is used as the solution of the wave equation used in
the four-pole theory. For graphic presentation of pulsatory flow, bond graph with a new
element of DB (double bond) type is applied. Such a bond graph enables modelling
of dynamics with regard to wave phenomena occurring in blood vessels. The described
method of modelling of pulsatory flow in cardiovascular system enables one to de-
termine the transmittance and impedance of a blood vessel segment and provides
a basis for determination of resonant characteristics for different frequencies of heart
work. Theoretical frequency characteristics are compared with actual characteristics
obtained during in vitro research on a hydraulic simulator.

Literature

[1] RANFT U., Zur Mechanik und Regelung der Herzkreislaufsytems, Springer-Verlag, Berlin, 1978.

[2] PATER L., An electrical analogue of the human circulatory system, University Groningen, 1966.

[3] KRrus P., WEDDEFEKT K., PALMBERG J-O., Fast pipeline models for simulation of hydraulic
systems, Transaction of the ASME, 1994, Vol. 116.

[4] VIRSMA T.., Analysis, synthesis and design of hydraulic servosystems, ESPC, Amsterdam, 1980.

[5] DINDORF R., WOLKOW J., Fluid systems in medical engineering, Ossolineum, 1999.

[6] FiLipczyNskI L., HERCZYNSKi H et al., Blood flow. Hemodynamics and ultrasonic Doppler’s
measurement methods, PWN, Warszawa, 1980.

[71 Ripeout V.C., Dick D.E., Difference-differential equations for fluid flow in distensible tubes,
IEEE Trans. Biomed. Eng., 1987/14.



30 R. DINDORF, J. Wotkow

[8] PAWLICKI G., Essentials of medical engineering, Oficyna Wydawnicza Politechniki War-
szawskiej, Warszawa, 1997.

[9] Problems of biocybernetics and biomedical engineering, ed. by Nalecz M., V. 1, Biosystemy,
WKikL, Warszawa, 1991.

[10] NOWICK!I A., Essentials of Doppler's ultrasounds, PWN, Warszawa, 1995.

[11] HALDAR H., GHOSH N., Effects of body force on the pulsating blood flow in arteries, Engi-
neering Transactions, 1993/2, 41.

[12] COKELET C.R., The rheology of human blood. Biomechanics, Prentice Hall Publ. Englewood
Cliffs, 1978.

[13] RUDINGER G., Review of current mathematical methods for the analysis of blood flow, Bio-
medical Fluid Mechanics Symposium, ASME, New York, 1966.

[14] SKALAK R., Synthesis of a complete circulation, Cariovascular Fluid Dynamics, Vol. 2, ed. by
Bergel D.H., Academic Press, London and New York, 1972.

[15] BENHAM R., Study of the physiological simulation benchmark experiment, SIMULATION, April
1982, 152-156.



