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Modelling of the mechanical behaviour
of porous materials: a new approach

F. Cosmi, F. DI MARINO

Dipartimento di Energetica, Universita di Trieste, 34127 Trieste, Italy

A new approach to porous materials modelling is presented. In this model, a matrix of cells con-
tains a number of randomly distributed void cells in order to obtain the desired porosity.

The system is solved by means of a recent numerical method, the Cell Method. As an applica-
tion, the Young modulus of four sintered alloys is computed and the simulations show a good agree-
ment with the experimental results reported in literature, depending on the porosity of the sintered
powder and the Young modulus of the wrought material. Besides this application, the approach is
promising in a wider class of problems, namely all those in which a large number of random distrib-
uted heterogeneities or voids are present.
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1. Introduction

The Cell Method (CM) has recently been developed [1], [2]. It is currently be-
ing applied to several problems, and it has some advantages over more widely used
numerical methods, like FEM. CM has already been applied to thermal conduction,
mechanics of deformable solids, fracture mechanics, and electromagnetic wave
propagation [3]-[7]. In all these cases, the CM results agree with those obtainable
with other widely used numerical methods (FEM and FDTD - Finite Difference in
Time Domain), but there is something more to CM.

One of the major drawbacks of FEM is that the method cannot be applied when
large variations in gradient occur. That is why FEM models are unsuitable when-
ever the size of the mesh is not smaller than any typical size involved in the geom-
etry of the-sample [8]. This drawback directly stems from the use of a differential
formulation of the physical laws involved in the phenomenon under consideration.
On the contrary, CM uses global-integral variables to derive directly a discrete for-
mulation of the physical laws. As a consequence, all functions of position — field
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functions — describing variables involved in the constitutive equation do not need
to be differentiable. This is a good point whenever the displacement field under-
goes large variations, i.e., when the size of the heterogeneities is the same scale of that
of the cells.

It must be pointed out that, although CM uses global variables in order to write
equilibrium equations, it needs — just as any other method — writing constitutive equa-
tions at a local level. However, it is easy to see that CM is deeply different from FEM:
in CM no energy functional is computed, no differentiation is needed to minimize it.

2. The Cell Method

Let us give a brief description of the method for plane elasticity. First of all we
can think of the variables involved in any field problem as belonging to one of the
following classes:

* configuration variables — geometrical and kinematic variables, i.e. displace-
ments, velocities, strain tensor;

e source variables — static and dynamic sources of the field, i.e. forces, momenta,
stress tensor;

* energy variables, from the product of the previous two, which we are not to be
used in the following.

Given this classification, we may perform a discretization of a continuum sample
by means of two staggered complexes of cells (figurel):

e a Delunay complex, whose primal cells are associated with configuration vari-
ables, defining the connectivity of the nodes;

Delaunay mesh
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Fig. 1. Primal and dual cell complexes
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* a dual Voronoi complex with which source variables are correlated, in order to
write equilibrium relations.

We may think of the dual cell as an influence region for the node. The equilib-
rium equations may then be written for each dual cell. In this way equilibrium is
established over the entire influence region of the node, collecting the contribution
from each primal cell surrounding the node. Only global variables are used, and equi-
librium equations are directly derived in a discrete form, embedding the various con-
tributions from each primal cell surrounding the node in the form of an equilibrium
equation.

For an affine (linear plus a constant) approximation of the displacement field over
the primal cell, strain components are constant within each cell and can be written
as [7]: o
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where ¢ is the thickness of the sample, u; denotes the displacement component of
node i along the j axes, A, is the area of the primal cell, A, represents the area of
the primal cell side opposed to node i and A;; is the projection of A, along the / axes,
as shown in figure 2.

Equation (1) can be written in a more synthetic form as

Fig. 2. Geometrical quantities
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{e}. =[B]{u}. . @)

Introducing the constitutive matrix of the primal cell, [D],, Hooke law for each
primal cell may be written as

{o}. =[pl.{e}, =[DL.[B). {u}. , 3)

where {G}, collects the stress components.

As already stated, equilibrium equations are written for the dual region, that is
the influence region of each node of the primal cell. In order to do so, the surface
forces acting on the two sides of the dual polyhedron surrounding each node inside
the primal cell must be expressed.

Let us consider the part (two sides) of the dual polyhedron of node 4 that falls
inside a primal cell ¢ (figure 3). The forces acting through these sides will be T,
and T;”. With reference to figure 3, it can be seen that

=T+ T/
and remembering that stress components are uniform within each cell whenever an
affine interpolation of the displacement field is assumed, the surface force 7, will

be given by
(o)
Thx _—1— Ahx 0 Ahy O-X
T, | 2| 0 4, A’
T

wor
For the three nodes of the cell

J Th=T'n+T"n

Fig. 3. Forces through the sides of the dual cell of node
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and, from (2) and (3), for each primal cell ¢ we obtain

{r}. = [BL DL [BL{uk..

where for this simulation isotropic linear elastic plane stress was assumed.

It is now possible to write the equilibrium condition for each dual cell. We make
the following propositions:

« U, is the dual cell surrounding node % (figure 4);

* T,¢ is the resultant surface force acting on the two sides of U , belonging to cell

(&

» T, is the total force acting on the boundary of T, due to all the cells surround-

ing node %

T, =2Thc;

o F¢ is the volume force acting on the part of U, belonging to cell c;

Fig. 4. Dual cell of node 4
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« F, is the resultant volume force acting on U,
Fh = Eic.
c

Equilibrium for each node 4 can then be expressed by the set of n equations (where
n is the number of nodes)

T,+F,=0.

Fig. 5. Boundary dual cell

If cell ¢ rests on the boundary of the sample (figure 5),
* B, is the resultant of the external forces acting on U, , through the boundary
cells and equilibrium equations become '
T,+F,+B,=0,
that is a set of 2n linear equations in the 2n unknowns u

Uy, (i=1,..., n), which can
be solved with the usual methods.

ix?

3. Sintered alloys compression simulation

Mechanical properties of sintered alloys are known to depend strongly on residual
porosity. In the proposed model, the primal cells can be of two kinds: ferrous and
voids. Voids are randomly distributed among the ferrous cells in order to obtain the
desired porosity. A compression test is then simulated, and the estimated value of
Young modulus computed.
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As already stated, the equilibrium equations have been directly derived in a dis-
crete form, and can therefore embed discontinuities of the constitutive matrix [D]
from one primal cell to the adjacent. It has already been mentioned that at this stage
only linear elastic plane stress has been considered within each primal cell. The model
at present is limited to compression. In fact, small non-linearities in strain/stress
behaviour below the macroscopic yield occur in experimental tension tests of sin-
tered alloys. This progressive damage accumulation at the moment has not been taken
into account by the model.

The method has been implemented in Fortran. Trials have been run imposing
a simulated compression test (actually a negative relative displacement) on bars with
various densities of random distributed voids. The primal mesh always had 5340
cells. The prismatic specimen modelled was 10 x 38 mm. Figure 6 shows the primal
and dual meshes used.

The simulation results are compared with the experimental values reported for
compression tests in Bertini et al. [9]. Five simulations have been performed for each
alloy, which is the same number of compression tests performed by the authors of
[9]. Four different ferrous sintered alloys have been considered.

The size of the primal cells in the simulations was chosen so as to compare with
the size of the heterogeneities that are usually found in sintered materials. Porosity
changed slightly from one simulation to the other, while porosity distribution was
random. In the following:

E, =Young modulus of wrought material,

E; = experimental compressive Young modulus,

E,, = computed compressive Young modulus.

Fig. 6. The Delunay and Voronoi meshes used in the simulations



62 F. Coswmi, F. D1 MariNO

Each of the simulated materials Al and A2 is shown in figures 7 and 8, respec-
tively. In order to improve readability, void cells are printed in black, while ferrous
ones are shown in white. Average results for materials A1 and A2 are shown in table
1 and table 2, respectively. Each of the simulated materials Bl and B2 is shown in
figures 9 and 10, while the average results for them are shown in table 3 and table 4,
respectively.

Details of the simulation results are given in table 5 for materials A1 and A2 and
in table 6 for materials B1 and B2. It can be seen that, although a general trend is
observed (increasing porosity causes apparent decrease of Young modulus), poros-
ity alone is not sufficient to account for all the variations: different distributions of
voids in the matrix lead to different “structures”, porosity being equal (see results
from simulations 1 and 4 for material A2). On the other hand, different porosity dis-
tributions lead to the same result, although porosity has changed (see simulations 2
and 5 for material B1).
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Fig. 8. Material A2
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Table 1 Table 2
Material Al Material A2
Commercial powder NC100.24 Commercial powder NC100.24
E, 207 GPa E, 207 GPa
Porosity content 13.4% Porosity content 9.8 %
Eg 150 GPa Eg 168 GPa
Average porosity of the model | 13.25% Average porosity of the model | 10.1%
Eqy 138 GPa Ecy 155 GPa
Deviation 8% Deviation 1.7%
Table 3 Table 4
Material Bl Material B2
Commercial powder AISI316L Commercial powder AISI316L
E, 197 GPa E, 197 GPa
Porosity content 14.5% Porosity content 11.9%
Eg 140 GPa Eg 150 GPa
Average porosity of the model | 14.34% Average porosity of the model | 12.04%
Eqy 125 GPa Ecy 138 GPa
Deviation 10% Deviation 8%
Table 5
Material
Simulation Al A2
Porosity Ecy, (GPa) Porosity Ey (GPa)
1 12.8 143 9.7 155
2 13.9 138 10.6 154
3 13.6 128 10 156
4 134 137 9.7 158
5 12.6 142 104 152

Graphs showing the dependence of E,, on porosity of materials Al and A2 are
shown in figure 11, while for materials B1 and B2 are shown in figure 12, which
again exhibit the general trend and the previously discussed scatter.
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Table 6
Material
Simulation Bl B2
Porosity Eq\ (GPa) Porosity Eqy (GPa)
1 14.1 126 12.2 135
2 14.4 125 12.5 133
3 14.3 124 11.6 140
4 14.3 124 11.8 138
5 14.6 125 12.1 143
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Fig. 10. Material B2
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Materials A1-A2
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Fig. 11. Dependence of E,, on porosity of materials A1 and A2
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Fig. 12. Dependence of E,, on porosity of materials B1 and B2

4. Conclusions

Although at the moment the model assumes a simple linear constitutive law for
the filled cells and linear interpolation functions for the displacement field, the re-
sults obtained are very promising.

Deviation between experimental and simulation results was never greater than
10%, which is within the usual range of variability for such materials.

Higher order interpolation for CM has already been implemented [7], [10], but
it would be more important for the purpose of the present research to introduce rheo-
logical behaviours other than the elastic one. An elastic-plastic incremental model
has been developed and discussed in [9] and will be applied to the modelling of the
mechanical behaviour of the sintered materials.
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