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Identified rheological 2D models of myocardium proposed earlier by us to analyze static ‘force-
deformation’ curves and quasi-static hysteresis loops are used to describe stress relaxation and creep in 
a wide range of living soft tissues, beginning with myocite level and up to the muscle fibers. The viscous 
properties are determined with the help of the dampers connected in series or in parallel to certain elastic 
primary elements of the models. The stress response functions of the models are found for the external 
longitudinal step-wise or pulse (column-like) stretching. The inverse response functions of the 
longitudinal displacement for the external stress loading of the pulse shape time dependencies are also 
found. The values of both elastic modules, as in the static case, and also viscous coefficients are 
estimated by comparing theoretical curves of relaxation, creep and recovery with the experimental data. 
The latter are obtained on rather different objects, passive muscles preparations (the stress relaxation 
response) and endothelium cells (the creep response). It is stated that 2D models proposed appear to be 
too general to describe nonlinear relaxation and creep properties, which are lacking the traditionally used 
1D ones without essential modification of those models. 
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1. Introduction 

Living soft tissues on all levels of organization possess, as a rule, viscous 
mechanical properties due to internal viscosity of protein molecules, cytoplasmatic 
friction in intracellular structures, extracellular damping caused by environmental 
fluids, etc. The stress relaxation and the creep are considered to be the most prominent 
features by which this friction manifests itself in the experiments. Up untill now, they 
were modelled within one-dimensional (1D) rheological models similar to the four-
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element Burgers–Frenkel model. These models are traced back to classical ones by 
Kelvin–Voigt and Maxwell [1], [2], in which the elastic (spring) and the viscose 
(damp) elements are connected, consequently, in parallel, or in series. The latter model 
and the models with the dash-pots (dampers) connected in series have been commonly 
believed to describe solely the stress relaxation. 

Recently [3], it was pointed out that the nonlinearity of steady state and hysteretic 
force-length curves may be caused by a simple geometric factor involved in strained 
biological tissues, the so-called ‘unfolding’ effect of transversal vs. inclined elastic 
elements (see 2D models proposed therein). The possibility of an adequate description 
of static ‘passive stress–deformation’ dependence for papillary muscles was studied 
using classical linear elastic elements combined into the structure similar to the 
morphological functional unit of myocardium. The transversal elastic spring in 2D 
models plays an essential role hampering the unfolding and restoring the initial 
configuration after removal of the load.  

Later [4], [5], the viscosity has been taken into account using Kelvin–Voigt blocks 
as inclined and transversal elements. It was found that the shape of hysteretic stress–
deformation loop may indicate which elements’ viscosity prevails in the sample tissue. 
This is straightforward to elucidate the question whether the stress relaxation can be 
described by the 2D models proposed. The latter may give the effects of nonlinear 
dependence of relaxation on deformation that is usually observed in the experiments 
on soft living tissues. We are also interested whether it is possible to describe the 
creep response, which is also nonlinear, by means of 2D models with blocks including 
the dampers connected in series, similar to Maxwell’s model.  

2. Morphological background 

A great deal of morphological data on the living soft tissues shows definitely the 
similitude in the peculiarities of topological structure on the prime, secondary, tertiary, 
and higher levels of tissue organization. For the sake of specialization, the major part 
of our rheological experiments was done on a papillary muscle of laboratory animals. 
It has a ‘cigar’ shape and minor anisotropic effects, being almost uniaxial. Later we 
give a brief review of the myocardium morphology, having in mind the features, 
which are generally common both in the scale and in the kind of preparation. 

Each soft biological tissue, for example, the heart muscle media (myocardium), 
may be partitioned into cellular and intercellular structures. Nearly one third of all 
cells are the myocytes, the force-producing cells in the muscle. They are connected 
‘end-to-end’, or ‘end-to-side’ and make up a compound structure. According to their 
size, they form two third of the muscle fibers volume. 

The collagen interlacing cover, which rounds the group of cells, makes the muscles 
elastic. It forms a complicated structure made of intercellular material, mainly the 
collagen threads. The collagen threads consist of tropocollagen, the triple-coiled 
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proper collagen molecules [6]. The spiral-shaped perimysial collagen threads form 
a fibrillar network, which contains the blood vessels.  

The fibrillar collagen network makes up a mesh structure and consists of the struts 
that connect the myocites with each other, with capillaries and with large collagen 
filaments, or with the thin cross-connections between large collagen filaments. These 
struts act as the coupling springs between myocytes. 

The great collagen filaments of perimysium surround the group of muscle’s 
filaments and connect endo- and epimysium. At last, the elastic and collagen filaments 
envelop in a shuttle shape the continuum of some hundred of myocytes with common 
vessel stream in the form of a fascicule [7]. The spiral perimysium filaments couple 
the fascicules (the ‘sheets’, or the ‘lamina’), and this provides compliance and sliding 
of the fascicules in the chamber wall.  

This collagen network equalizes and aligns myocytes and capillaries, and also, 
prevents myocytes and sarcomers from overstretching. It also participates in the 
transmission of the force generated by myocytes and in providing the stretching force 
and stiffness of the tissue [8], [9]. 

The viscosity of a biological tissue on a cellular level originates from the fluid-like 
plasmodium cytoplasm, in which a complex system of internal cytoskeleton, made up 
from many intracellular microfilaments and microtubules, is immersed. The cellular 
membrane composed of the lipid–protein bilayer serves as a surface producing 
intercellular friction. 

In the physiological range of deformations (within 0.3 of the sarcomer length), the 
static component of the stress in passive heart muscle rises nonlinearly in few cases [10], 
[11]. The complicated character of the ‘stress–strain’ relation and the dependence of 
dynamic differential rheological parameters on the initial conditions was found on the 
sheets of myocardium cardiac and skeletal muscles at sequential levels of stretching. 
Similar effects are observed also in the human aorta, in the skin, in sinew of the small of 
the back muscle, in pericardium, in brain hard cover, etc. [12]–[15]. 

The similarity of the morphological structures of most biological tissues makes it 
possible to study rheological features of various tissues using the models proposed 
earlier by us to describe isolated papillary muscle. Because of the complex geometry 
of the objects and various loading conditions, there is a need to develop 2D (and 
perhaps 3D) mathematical models, in addition to usually used 1D ones, in order to 
predict the rheological behaviour of an organ on the cellular and tissular levels. 

3. Model description 

According to the principle of a minimal number of primary elements introduced in 
order to simulate the rheological features observed, we use here the most primitive 
models depicted in figure 1. Two kinds of the problem statement will be used in the 
following. The description of stress relaxation is mostly pronounced when the 
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stepwise or rectangular pulse-shaped external stretching and releasing are given and 
the resulting force time is measured. On the other hand, the creep and recovery 
response of the total longitudinal deformation under pulse-shaped external loading can 
also be calculated when the external force is given and resulting deformation is 
calculated. 

a) b)  

c)  

d)

 

e)  

Fig. 1. Schematic view of the models composed of the elastic elements with spring elastic constants Ki 
and damping elements with the viscous constants Hi, i =1, 1e, 2, 3, 3e, 3v 

The simplest 1D model KV_E (figure 1a) with four primary elements (two Hook’s 
springs with stiffness coefficients (force/length) K1, K2 and two Newtonian damps 
(force time/length) H1, H2) can be solved for the resulting force F acting at the right 
and left ends under the total external stretching with the deformation ε (t) given. The 
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key variable in this case is the deformation ε2(t) of the damp H2, which satisfies the 
differential equation: 
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where the total initial length l0 = l01 + l02, hence ε l0 = ε1l01 + ε2l02, and 
η = η1 + l01/l02η2. Here ki = Ki l0i, ηi = Hi l0i, i = 1, 2. After solving equation (1), the 
total force F = k2 f including both elastic and viscous components can be found: 
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The 2D rhombic model RH-K13 with Kelvin’s blocks K1H1 and K3H3, whose 
arrangement it is shown in figure 1b, leads to the following set of differential 
equations in the case of the total longitudinal deformation ε(t) given: 
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Here the same as in (1) holds for ki and ηi, i = 1, 2, 3; and λ1 = 2l01/l0, λ3 = l03/l0, 
κi = k2/ki, γ = h/l0. This set of equations for inclined (ε1) and transversal (ε3) 
deformations can be solved, giving the time dependences of these quantities, and the 
total force can be calculated as follows: 
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Another 2D model of the ‘parallelogram’ geometry (figure 1c) PH-K12 represents 
the one which is ‘flexible’ at the jumps of the total longitudinal deformation. Note that 
the previous ones cannot be subjected to the abrupt changes in the length due to the 
fact that the damps are ‘frozen’ for infinite rate of the deformation changes. The set of 
differential equations for the inclined and longitudinal deformations is as follows: 

 










 +
+−=

•

3
33

11
11

1

2
1

)1(
/ Ψ

κλ
ελ

κε
η

ε k , (6) 



A. V. KOBELEV et al. 28 

 










 +−+
+−=

•

3
33

22
2

2

2
2

)1(1
Ψ

κλ
ελε

ε
η

ε k , (7) 

where  

 
[ ]2

22
2

1
2
1

3
3

)1(1)1(
1

ελεελ

γλ
Ψ

+−+−+

−
−= . (8) 

The transversal deformation can be found after solving (6) and (7) by the 
expression: 
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The resulting force is given by: 
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The last two models (figures 1d and 1e) contain the block with a damper, 
connected in series with the Kelvin element, in the inclined (H1v) or in the transversal 
(H3v) primary elements. They are similar to 3-element generalized Maxwell blocks in 
which the creep in solids and the flow in fluids are usually described. Let us present 
the equations for the case of a given total longitudinal deformation for the model RH-
KV1 (figure 1d). The principal variables in this case are the deformations of the 
damper H1v and of Kelvin’s block H1eK1e: 
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The resulting force can be calculated according to: 
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Let us now turn to the inversed statement of the problem, when the external 
longitudinal loading f (t) is given and the resulting longitudinal deformation ε(t) 
should be found. We begin with the model KV_E (figure 1a) already solved in the 
straightforward statement. Now the set of differential equations reduces to: 
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In the rhombic model RH-K13 with Kelvin’s viscous blocks K1H1 and K3H3 in the 
inclined and transversal elements (figure 1b) the following equations hold: 
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The resulting total longitudinal deformation is: 
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And at last, in the rhombic model with connected in series viscous and Kelvin’s 
blocks as transversal element RH-KV3 (figure 1e), in the case of a given external 
loading f (t) the set of three differential equations representing deformations of 
transversal viscous ε3v, transversal elastic ε3e and inclined elastic ε1 elements is as 
follows: 
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where expression (19) holds for the resulting deformation, and it is assumed that 
)(2/1 333 ve εεε += . 

4. Results 

In order to compare the model predictions with the experimental data, we have 
taken two works [12], [16] with rather different objects (passive muscles and 
endothelial cells) and different methods used and features measured (stress relaxation 
and creep), having in mind the generality of the phenomenological models proposed.  

At first, we shall study the displacement under periodic column-like loading force 
in 1D and 2D models. Then it will be compared with the results of creep 
measurements in living cells of macrophages [16] shown in figure 2. The spatial scale 
of these experiments carried out with the help of micron-size magnetic beads is less 
than micron displacements and the forces scale is 0.4 mN in the peak of the 
rectangular pulse of the force applied. The magnetic bead is implanted at the surface 
of the cell and moves under external magnetic force. Due to different kinds of bonds, 
the bead moves at the same time as in a viscous fluid, and having elastic restrictions of 
the attached environmental filaments. 

 a) b) 

  

 c) d) 



2D rheological models for stress relaxation and creep 31 

  

Fig. 2. The displacements at 3 periodic pulses of external force in KV-E (a), RH-K13 (b) 
and RH-KV1 (c) models in comparison with experimental data [16]. The values of parameters are given 

in the upper parts of the panels. The curve (d) represents the creep versus time with non-monotonic 
dependence of peak amplitude in the model RH-KV1 at some different values of parameters 

a  
 

b  
 

c  
 

d  
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e  

Fig. 3. Passive tension decay in skeletal muscle preparation [12] at longitudinal stretching ε = 0.23 
of rectangular shape (circles) and predictions in parallelogram PH-K12 geometry (a) and rhomb 

RH-KV1 geometry (b) models. The time of passive tension evolution in the same preparation [12] 
at four-steps consequential stretching by ε = 0.05 in the experiment (c) and according to the predictions 

in the same models as in (a) and (b), respectively, (d) and (e) 

Figure 2a shows the results in the 1D model from figure 1a. Although it can 
be usually found in the literature [12], it contradicts experimental data which is its 
serious drawback. Namely, the shape of the consequtive steps of the displacement 
curve in this model (and also in all 1D models) is one and the same, irrespective of the 
step number. 

The result in 2D model (figure 2b) fits better the experimental data, but it appears 
that the unfolding effect that causes the non-linearity of stress–strain dependence and, 
consequently, the dependence of the curve shape on the step number, in this case, is 
almost beyond the range investigated. 

The model with transversal block composed of damper connected in series with 
Kelvin’s element (figure 1e) seems to be the most promising one. The displacement 
response curve at the second peak (figure 2c) is in quite good accord with 
experimental result. The second peak has slightly lower experimental amplitude than 
the first peak, but unfortunately, the curve fails in the amplitude and the shape of the 
third peak. Nevertheless, this model quite satisfactorily describes non-monotonic 
dependences of the peak amplitude on the pulse number due to high sensitivity of the 
curve shape to the values of model parameters, which is shown in figure 2d. 

Now we turn to another statement of the problem, which deals with the stress 
relaxation under stepwise external stretching. Figure 3a presents the stress relaxation in 
time [12] in passive skeletal muscle, 11 mm in length, induced by stepwise extension 
with deformation of 0.23 compared with traces obtained in parallelogram PH-K12 
(figure 3a) and rhombic RH-KV1 (figure 3b) models with two types of viscous element 
topology (see figures 1c and 1d, respectively). The traces are shifted to the left by 3 sec. 
The negative part is not shown. We can conclude that (b) shows qualitatively better fit, 
although one cannot definitely attribute the decrease in the stress to the relaxation (a) or 
to the creep (b). Experimental time of the stress at four-step increment by 0.05 in 
deformation, which is the other trail on the same preparation in [12], is shown in figure 
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3c. Note the nonlinear rise of the amplitude spikes due to the impact stiffness in the 
points of abrupt increments of the sample length. Here the change of relaxation rate with 
deformation value is also seen, which is characteristic of the most living soft tissues. The 
curve obtained in model b (figure 3e) is in good concordance with experimental curve in 
both peak tension values and decay shapes, depending on the step number, although the 
model (a) shows quite good fit, too (figure 3d).  

5. Discussion 

One of the physiological functions of viscosity in living tissues is to prevent their 
breaking at fast deformations. Practically all biological tissues are viscous; however, 
the nature of viscosity in muscle tissues was unclear up untill now. It is realized that 
the response to sufficiently quick increments of deformation in the passive muscle is 
accompanied by the relaxation. A number of experiments [2], [12] show that the 
relaxation processes are influenced not only by the amplitude of the deformation step, 
but also by the working length of the preparation. This effect is not reproduced in any 
of rheological models without additional assumption that viscosity coefficient depends 
on the preparation length [9].  

The geometrical factor of the tissue structure may be successfully used in 
mathematical modelling of active [3]–[5] and passive stress dependence on the muscle 
length. The myocardium morphological structures, as in most of other living soft 
tissues, with various values of linear stiffness are functioning in different range of 
physiological deformations. In the initial range of deformations, soft elements are 
mostly involved, whose resistance to active stress generated by the muscle is weaker. 
When deformation increases, stiff elements play the main role preventing the tissue 
destruction. This fact is the key moment in our description of the nonlinear stress–
strain dependencies in 2D models proposed. For example, the increasing stiffness with 
deformation may be caused by the ‘unfolding’ effect [3]. This is true, if certain 
topology with more soft transversal elastic elements and more stiff inclined and 
longitudinal elements is fulfilled in the tissue morphology. Thus, our proposition to go 
beyond the traditional linear 1D models is obviously promising in description of 
nonlinear rheological features of living soft tissues often observed. 

The 2D models presented here offer quite good possibility of describing the most 
characteristic steady state, hysteretic and stress relaxation features in living soft 
tissues. It is so, even in the models with Kelvin’s blocks that cannot give the stress 
relaxation itself in 1D. These models are useful, provided that they are included in 2D 
models, due to an extra degree of freedom guaranteed by two-dimensionality. This 
way, the relation between the structure and the function manifests itself in various 
models corresponding to different types of the tissue morphology. The most reliable 
model, with respect to experimental data, may reflect the most probable and working 
structure of the preparation. 
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The non-linearity of stress–deformation relation in the case of stress relaxation 
leads to the dependence of the spike amplitude at the equal-step deformation on the 
working length determined by the step number. Moreover, for the same reason, the 
relaxation rate depends on the step number. In other words, this means that if the soft 
element with low viscosity works first, the relaxation rate will be low in the first step. 
Then, when the hard elements of greater viscosity predominantly start working, the 
relaxation rate raises in the next deformation steps. It is likely, just the same case takes 
place in the relaxation experiments [12]. 
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