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Computer modelling of ciliary motility
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This article is devoted to mathematical modelling of motility of a single cilium. After some simplifications, a mechanical model of a
cilium as well as a mathematical model of the mechanism of ciliary motility were proposed. These models are based on the hypothesis
which was formulated earlier.
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1. Introduction

The ciliary motility plays an essential role in hu-
man health. The ciliary type of transport is used for
numerous vitally important functions. First of all, it is
the mucus transport in the lungs [1]. The cilia arise
from the epithelial layer. One of the main protective
mechanisms of the lung is the airway surface liquid
(ASL), which is a fluid layer coating the interior
epithelial surfaces of the bronchi and bronchioles. The
ASL exhibits two-layered structure. The periciliary
layer (PCL), a region of low viscosity, is situated in
the proximity to the epithelium [2]. The region be-
tween the PCL and the airway is occupied by a more
viscous mucus layer. The cilia beat within the PCL
layer in a coordinated manner forming the metachro-
nal wave. The tips of the cilia have been observed to
penetrate the mucus during their beat cycle. Ciliary
movements lead to the propelling of the ASL towards
to the trachea and then out of the human body. This
process is known as mucociliary transport. Foreign
objects contained in the bronchi and bronchioles (e.g.,
inhaled particles, bacteria spores) are trapped in the
viscous mucous layer. The proper functioning of this

process is fundamental to maintaining a healthy state.
A major disease associated with the breakdown of mu-
cociliary transport is cystic fibrosis. Specific genetic
defects associated with this disease lead to reduced
mucociliary transport, leaving the lungs prone to
chronic infections from, e.g., bacterial spores that are
not eliminated from the bronchioles. Other mecha-
nisms can eliminate the foreign objects (cough, airway
constrictions), but a fundamental observation is that
a healthy state is characterized by a good functioning
of mucociliary transport, while other mechanisms
such as cough are invoked as a response to a diseased
state.

Another important example of the ciliary transport
is women’s reproductive function. The oviductal cilia
play a major role in ovum pickup by the oviduct, and
the ovum transport within the oviduct.

At the same time, the cilia are well known as organ-
elles providing the cellular motility. Some examples
of the cilia were found in protozoa (e.g., Opalina, Para-
mecium, Pleurobrachia), where they perform the propul-
sive function. The typical length of a cilium is about
5–10 μm, the diameter is about 0.25 μm [3]. The cilium
has a complex internal structure, which is called the
axoneme. It is composed by 9 doublets of microtubules
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(located around its cross-section with dynein arms dis-
tributed along each pair, as is shown in figure 1A, B), the
central pair of microtubules, nexin links and radial
spokes. Dynein arms are complex molecules, which
generate a bending momentum for microtubules.

A visual characteristic of the ciliary beating is the
asymmetric pattern with the rapid effective and slow
recovery strokes. During the effective stroke the cilium
rotates around the base being slightly bended and
pushes the surrounding liquid. This is followed by the
recovery stroke during which the cilium returns to the
initial position and bends in such a way as to avoid
a reverse liquid stream (figure 1).

Most of the proposed models for the ciliary beating
mechanism are based on the sliding filament theory. This
theory supposes that a bending moment results from an
active sliding process, which is caused and controlled by
dynein arms – active elements of the axoneme.
RIKMENSPOEL and RUDD [4] assumed two different
types of active moments – standing and travelling mo-
ments, generated by active elements of ciliary micro-
structure. To take into account the ciliary beating asym-
metry, MURASE [5] assumed that functional properties of
active elements differ between the opposing microtubu-
lar doublets. Incorporating the aforementioned property
into the mechanical model, the ciliary-like repetitive
beats were simulated. DILLON and FAUCI [6] presented
a finite-element model of the cilium, with elements of
the axoneme incorporated, the control mechanism of
ciliary beating based on the algorithm using the curva-
ture of the organelle for the motility control.

Unfortunately, although the cilium inner structure
is known, the function of each structure element is not
clear and the beating mechanism is still not under-
stood. Previous mathematical models were con-
structed by incorporating the mathematical formaliza-
tion of some hypotheses on the ciliary motility

mechanism into a mechanical model. After that,
varying the model parameters, authors tried to repro-
duce an experimentally observed beating pattern.
From a computational point of view, such a method is
quite difficult and time-consuming.

2. Method

The mathematical model is based on the hypothe-
sis, which was earlier proposed by TREGOUBOV et al.
[7]. We proposed the method based on solving the first

problem of the dynamics, that is a definition of inner
cilium forces from laws of motion. This problem can be
solved with an arbitrary degree of accuracy. In doing
so, forces can be seen as time functions. After that the
forces are subdivided into active positional forces and
passive dissipative forces. Then an identification prob-
lem is solved to determine the model parameters, which
allow the reconstruction of forces. For this procedure
a mechanical model must be constructed.

The simple mechanical model of the cilium has
been constructed, on the assumption that all move-
ments occur in single plane. The model consists of the
successively hinged rods. The number of rods n is
arbitrary and defined by a specific pattern of ciliary
beating. Positions of the rods are defined by a set of
generalized coordinates ,,1, nii =ϕ  which are the an-
gles between rods and vertical lines. The rods are
considered to be the same length l and mass m. The
governing equations of this mechanical system were
derived in the form of Lagrange’s equations:
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Fig. 1. Tubular structure of the cilium (A). The axoneme (B): 1 – central pair, 2 – outer doublets, 3 – dynein arms,
4 – nexin links, 5 – radial spokes, 6 – central capsule, 7 – cytoplasmic membrane.

The cycle of ciliary beating (C): 1–3 – effective stroke, 4–8 – recovery stroke
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where T is the kinetic energy of the mechanical sys-
tem, ϕi are the generalized coordinates, iϕ&  are the
generalized velocities, Qi are the generalized forces.

Different experimental patterns of ciliary beating
were analyzed and laws of their motions were incor-
porated into equations of motion as given functions of
time. As a result, generalized forces were obtained as
time functions Qi(t), which are the rotational moments
applied in hinges.

In order to subdivide generalized forces into ac-
tive and passive ones, it is assumed that passive
forces consist of only viscous dissipative forces rep-
resenting the properties of a surrounding medium
and depend only on generalized velocities iϕ& . Active
forces consist of only positional forces and depend
only on generalized coordinates iϕ&  and time t. So it
can be presented as:

,,1),(),(),,( passiveactive niQtQtQ iii =+= ΦΦΦΦ && (1)

where Φ = (ϕ1, ..., ϕn), )...,,( 1 nϕϕ &&& =Φ .
It is assumed that Qi is linearly dependent on ϕi

and iϕ& , so equation (1) takes the following form:

According to the hypothesis formulated earlier
[7], the cilium has two positions of the mechano-
chemical equilibrium. The first one corresponds to
the position from which a cilium comes into a recov-
ery stroke. The second one corresponds to the oppo-
site position from which cilium starts its effective
stroke. These two positions are given by sets of an-
gles n
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Transitions between equilibrium positions are
made by incorporating )0(

iϕ  and c(t). According
to the algorithm of motion control represented in

[7], c(t) incorporates its values in the following man-
ner:
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Thus, the unknown parameters of generalized
forces, such as: cI, c*, cII, }{ I),0(

iϕ , }{ II),0(
iϕ , b, θ, }{ I
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iΔ  must be found. Parameters θ, }{ I

iΔ , }{ *
iΔ ,

}{ II
iΔ  can be found from the solution of FPTD di-

rectly. Other parameters can be derived using Qi(t)
– the solutions of the FPTD by means of the solution
of the identification problem by minimizing the func-
tional of the least squares method:
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This optimization problem was solved by the di-
rect Powell’s method [8]. Cauchy problem for the

system of governing equations was solved by the
Cash–Karpe method.

3. Results

As the results of the series of computational experi-
ments, different beating patterns, which are typical of
a cilium in a normal state, were obtained (see figure 2A).
The ciliary-like beating of Chlamydomonas flagellum
was also reproduced. Although the model and the
incorporation of parameters differ from the “classical”
ciliary case, the general algorithm remains the same.

Patterns which are typical of a cilium that under-
went mutation were also reproduced by some changes
in the algorithm (figure 2B). The possibility of mod-
elling the pathological cases allows the model investi-
gation in the cases of some diseases and their conse-
quences.
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4. Conclusion

The mechanical and mathematical models pro-
posed allow us to reproduce ciliary and ciliary-like
patterns in normal and pathological cases. These re-
sults make it possible to support the hypothesis of the
ciliary beating mechanism. They also offer the possi-
bility of testing some advanced hypotheses, formu-
lating the new ones and incorporating this model into
the general model of mucociliary transport.
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Fig. 2. Results of computer modelling (case of n = 7): cilium in normal state (A); cilium that underwent mutation (B)


