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A tribology of curvilinear bone surfaces in human joints
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Two co-operating bone surfaces in human joint are separated by the thin layer of synovial fluid. Con-
sidering hydrodynamic lubrication problems in such a case, we should take account of actual various
geometry of biobearing bone surfaces. In order to study the synovial fluid flow in biobearing gap, its
velocity components and proper Reynolds equations allowing determination of hydrodynamic pressure
distributions are derived.
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1. Preface

The layer boundary simplifications of basic equations of motion for hydrodynamic
symmetrical flow of synovial fluid in biobearing gap were presented by Wierzcholski
[1, 2]. Flows in such gaps are not considered in theoretical works because till now the
proper Lamé coefficients for realistic co-operating bone surfaces are not derived (the
only exception is paper [3]). The flow through a narrow gap depends heavily on the
gap geometry. Therefore, the present paper shows the simulation of hydrodynamic,
unsymmetrical synovial fluid flow by means of the system of non-linear partial differ-
ential equations using the Lamé coefficients which describe the orthogonal curvilinear
biobearing surfaces, e.g. parabolic, hyperbolic and spherical.

The main aim of this paper is:

e To find the velocity components of synovial fluid flow and hydrodynamic pres-
sure for parabolic, hyperbolic and spherical bone surfaces with non-monotonic sec-
tions in longitudinal direction in biobearing human gap.

e To show a general analytical solution to lubrication problem for hydrodynamic
unsymmetrical flow of synovial fluid in curvilinear biobearing gap.

This paper is the continuation of the papers [1-3].
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2. Biobearing geometry

The mathematical theory of slide biobearing computations is based on the real
model of the synovial flow and real biobearing gap in the thin layer between two co-
operating sliding bone surfaces. The solution of the lubrication problem for biobear-
ing depends on joint geometry [6].

Figure 1 presents radial elbow joint with spherical and hyperbolic bone surfaces.
Figure 2 shows the human elbow joint with parabolic and hyperbolic bone surfaces,
where ¢ is the circumference direction, ¢ is the generating line of rotational bone
direction and o, denotes the gap height direction.
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Fig. 1. Radial elbow joint Fig. 2. Elbow joint
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We consider axially unsymmetrical, stationary synovial fluid flow in the film be-
tween two rotational generating lines [1]. For thin layer boundary simplifications,
equations of conservation of momentum and equation of continuity have the follow-
ing dimension form [3]:
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where circumference direction 0 < ¢ < @, length direction b,, < a3 < b,, gap height
direction 0 < o < & The symbols b,,, b, denote the limits of the synovial fluid flow in
the length (generating line) direction, a. < 2n denotes the limit of the flow in the cir-
cumference direction. The gap height & must be a function of the variable «;, i.e.
& = &(ay) for unsymmetrical flow [2, 3]. The symbol 77, denotes dynamic viscosity of
synovial fluid with non-Newtonian properties, and p is synovial fluid density. System
(1)—(4) describes four unknowns, namely three components of the synovial fluid ve-
locity v; (en, o, o) for i = 1, 2, 3 and the pressure p = p(;, ). The symbol v, de-
notes the velocity component in the circumference direction, v, is the velocity compo-
nent in the gap height direction and vs is the velocity component in the length
direction. Symbols h; = h|(ez) and h; = hi(os) are the Lamé coefficients which
are dependent on the biobearing geometry. Both Lamé coefficients A, i3 depend on o
only because bone surfaces are rotational and non-monotone in the ¢ direction [3].

3. Lamé coefficients

Hyperbolic geometry is shown in Fig. 3. Radius vector of hyperbolic surface has
the form:

,=1x +jx + Kk, (5)
where 1, j, k are the unit vectors in the Cartesian coordinates x;. Dependences between

the Cartesian x; and hyperbolic coordinates ¢; for i = 1, 2, 3 on the hyperbolic surface
are as follows [3]:
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We introduce the following denotations: a — the smallest radius, a; = a + w — the
largest radius, w=a, —a, 2b — the bearing length. Equations (6) satisfy the following

whereas

equation of hyperbolic surface:

s T
x]2+x22=|:a+(%j w} . (7

If we neglect the terms of the order y ~ &la ~ 107, we obtain the Lamé coeffi-
cients for hyperbolic bone surface in the following final form [3]:
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2 h, =1, hy :——1—7)J1+4(aA)2tan2(a3A). (8)

h —
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Parabolic surface is shown in Fig. 4. The raaius vector has the form (5), and in this
case we have the following dependences between the Cartesian x; and parabolic co-

ordinates ¢;, for i = 1, 2, 3, on the parabolic surface [4]:
x, = acos*(a;4)cosa;, X, = acos’ (a3A)sin a, X, :%sin(a_;A), 9)
whereas

| a—w 1 [w

0<a, <a,<2m, |as|<—arccos , =
1 ¢ 3

A a b\a

where a is the largest radius, a, is the smallest radius, 2b is the bearing length, and
w = a — a;. Equations (9) satisfy the following equation of parabolic surface:

(10)

Fig. 3. Hyperbolic geometry Fig. 4. Parabolic geometry

If we neglect the terms of the order y~ ¢/a ~ 10~°, we obtain the Lamé coefficients
for parabolic bone surface in the following final form [3]:

h = acosz(a3A), hy,=1, hy =\/1 +4a’ A sinz(a3A)cos(a3A). (11)
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The dependences between the Cartesian x;, x,, x3 and spherical coordinates on the
sphere with the radius R: a; = ¢, aa/R = 9 (see Fig. 5) are as follows [4]:

X, =Rsina;cosq,, x,=Rsinassing;, x;=Rcosas, (12)

where: 0 < <27, 0 < o < & 0 < a3 < ©R, R being the radius of the sphere. Equa-
tions (12) satisfy the following equation of the sphere:

o+ 1 =R (13)

Fig. 5. Spherical geometry

We neglect the terms of the order w~ /R ~ 107 and we obtain the Lamé coeffi-
cients for spherical bone surface in the following final form:

hI:Rsin%, hy=1,  hy=L. (14)

4. A sketch of integration method

The synovial flow is generated by the rotation of the bone. Acetabulum is mo-
tionless, thus:

v, =wh,,v, =0,v; =0for a, =0(bone surface);

(15)

v =v, =V =0for a, =g(a]).

Taking into account the above boundary conditions for vy, v3 we obtain. from Egs.
(1), (3) the following particular solutions [4]:
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The integration constant C satisfies an algebraic equation:
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0

The continuity equation (4) we integrate with respect to the variable o, Imposing
condition v, = 0 for o, = 0 upon the synovial fluid velocity component v, we obtain:

1% o 17
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We substitute the velocity components (16) into formula (19). The boundary condi-
tion v, = 0 for o, = £ imposed upon the velocity component v, leads to the following
modified Reynolds equation [4]:
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where 0<a, <2m, b, <a;<b,, 0<a, <a, <&.This equation determines the pres-
sure function p[al,a3].

5. Final analytical solutions
In hyperbolic curvilinear coordinates the synovial fluid velocity components have
the following forms:
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The pressure function p for hyperbolic gap we find from the following modified Rey-
nolds equation:
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£

In parabolic curvilinear coordinates the synovial fluid velocity components have
the following form:
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The pressure function p for parabolic gap can be found from the following mudified
Reynolds equation:

0 [i ap} acos(/la3) 0 [83 acos(/la3) ap]

oa;\ n, O 1+ 4a’ Asin*(Aa;) 0% | T, A1+ 4a> A sin?(Aa, ) 0%
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0
= 6wa>22cos*[Aas], (28)
oa,
whereas
s:—q—z—, 0<a,<s¢, b, <a;<b,, 0<a; <2m.
&

In spherical curvilinear coordinates the synovial fluid velocity components have
the following forms:

Yy =~ z s(l—s) - +wR(1—s)sin-qi,
2n,R oq, sin% R




A tribology of curvilinear bone surfaces in human joints 11

2
0
Yy = ——2575(1—3)%.
0 3

The pressure function p for a spherical gap can be found from the following modi-
fied Reynolds equation:

3 3
Oay \ n, O R )Oas| n, R )oa,
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whereas

§=—= =@, =2, 02 a, <R, 0=@ <2m.

6. Conclusions

Determination of the Lamé coefficients (8),(11),(14) for the hyperbolic, parabolic
and spherical rotational bone surfaces enables us to obtain the analytical solutions of
unsymmetrical hydrodynamic lubrication problem for biobearing of human elbow
joint which is shown in Fig. 1 and Fig. 3 and which is described by means of the sys-
tem of non-linear partial differential equations (1)—(4) of the second order.
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