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in stochastic description 

of optimum standard deviations 
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The lubrication parameters of rough and used cartilage surface in human hip joint changes suddenly 
after its injury. Stochastic changes of the roughness of the surfaces of the head of bone and stochastic 
changes of the load imply the random changes of gap height. Hence, the pressure distributions and 
capacity as well as friction forces and friction coefficients radically decrease or increase in several 
microseconds after trauma. These changes are very difficult to measure, hence an appropriate numerical 
research in this field is very important. In order to obtain correct numerical results, we have to perform 
calculations using stochastic description with optimum standard deviations. 
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1. Preliminaries 

This paper presents the lubrication of human hip joint under stochastic, unsteady 
and impulsive conditions. The problem of lubrication of human hip joint after injury 
under random conditions has not been presented in the papers mentioned in the 
references: [2], [5]–[9], [13], [16]–[20], [23], [28], [29], [37]. New values of capacities 
of human hip joint occurring several microseconds after injury very often affect 
further development of disease or damage to the joint caused by trauma. Therefore the 
knowledge of lubrication parameters on the grounds of random conditions, for 
example the changes observed several microseconds after trauma, is necessary for 
further diagnosis and therapy. The concentrated force P applied onto the external 
surface of tissue causes an injury to human hip joint. 

If the concentrated force P is not great, then the deformations of human body and 
deformations of rough joint cartilage generate only small changes in gap height of 
human hip joint (see the head of bone in figure 1a). If the concentrated force is 
sufficient, e.g. it amounts to 10 P, we can observe a dislocation of the head of bone of 
human hip joint (figure 1b).  
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Figure 1c presents early degenerative changes of articular cartilage in human hip 
joint, while in figure 1c the narrowing of hip gap height is indicated. 

 

 

Fig. 1. Negligibly small gap-height changes caused by the force P in human hip joint (a), 
dislocation of bone head of right hip joint caused by the force 10×P (b), 

gap space of a joint gap with early degenerations of joint surfaces caused by the fibrillations of cartilage, 
after Buckwalter, Clinical Symposia, 1995, Vol. 47, 2, 

1 – surface fibrillations of cartilage, 2 – early disruptions of matrix molecular framework, 
3 – superficial fissures, 4 – roughened articular surfaces and minimal narrowing of joint gap, 

5 – sclerosis of subchondral bone (c) 

We assume that the semi-infinite region of the sclerosis of subchondral bone (see 
figure 1c) is occupied by a deformable tissue medium. 

c) 

a) b) 
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2. Governing equations and deformations of gap height  

Synovial fluid flow in the gap of a human hip joint is described by the equation of 
conservation of momentum and the equations of continuity. These equations and the 
second-order approximation of the general constitutive equation given by Rivlin and 
Ericksen can be written in the following form: 

 DivS = ρ dv/dt,   divv = 0,   S = −pI + η0 A1 + α (A1)2 + βA2 , (1) 

where: S is the stress tensor, p is the pressure, I stands for the unit tensor, A1 and A2 
are the first two Rivlin–Ericksen tensors, η, α, β are three material constants of 
synovial fluid, and η denotes the viscosity. The tensors A1 and A2 are given by 
symmetric matrices defined by [21], [27]: 

 A1 ≡ L + LT,   A2 ≡ grad a + (grad a)T + 2LTL,   a ≡ L v +
t∂

∂v , (2) 

where: L is the tensor of gradient fluid velocity vector (s–1), LT is the tensor for the 
transpose of a matrix of gradient vector of an oil (s–1), v stands for the velocity (m/s), 
t is the time (s), and a is the acceleration vector (m/s2). 

It is assumed that the product of the Deborah and Strouhal numbers, i.e. DeStr, and 
the product of the Reynolds number, dimensionless clearance, and the Strouhal 
number, i.e. Reψ Str, are of the same order. Moreover, DeStr >> Aα ≡ αω /η0, where 
ω is the angular velocity of the head of bone. We assume additionally rotational 
motion of a human head of bone at the peripheral velocity U = ωR, unsymmetrical, 
unsteady synovial flow in the gap, viscoelastic and unsteady properties of synovial 
fluid, constant density ρ of the synovial fluid, characteristic value of the gap height ε 0 
of hip joint, no slip on the bone surfaces, and R – the radius of the head of bone [30]–
[36]. We also assume the relations between dimensional and dimensionless quantities 
to be in the following form: 

r = ε 0r1,   ϑ = Rϑ1,   t = t0t1,   ε T = ε 0ε T1,   vϕ = Uvϕ1, 

 vr ≡ Uψ vr1,   vϑ ≡ Uvϑ1,   p = p0p1,   p0 ≡ Uη0R/(ε 0)2  
(3)

 

and the Reynolds number, the modified Reynolds number, the Strouhal and Deborah 
numbers are as follows: 

 Re ≡ ρUε 0 /η,   Reψ ≡ ρω(ε 0)2/η0,   Str ≡ R/Ut0,   De ≡ βU/η0R, (4) 

 DeStr = β /η0 t0,   ReψStr = ρ (ε 0)2/η0 t0. (5) 

In the case of synovial fluid, the inequality 0 < β/t0 < η0 is valid and the values of 
pseudo-viscosity β range mostly from 0.0001 to 0.1000 Pas2.The dimensionless 
symbols are marked with the subscript 1. Neglecting the terms representing a radial 
clearance ψ ≡ ε 0 /R ≈ 10−3 in the governing equations expressed in the spherical 
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coordinates r, ϕ, ϑ and taking into account the above-mentioned assumptions, we have 
[25]: 
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where: 0 ≤ ϕ ≤ 2πθ1, 0 ≤ θ1 ≤ 1, π/8 ≤ ϑ1 ≤ π/2, 0 ≤ r1 ≤ εT1, εT1 is the dimensionless 
total gap height. The symbols vφ1, vr1, vϑ1 denote the components of dimensionless 
synovial fluid velocity in circumferential, gap-height and meridional directions of 
bone head, respectively. 

Figure 2a shows the changes in the space of joint gap height caused by vibrations in 
unsteady impulsive motion [1], [3], [10]–[12], [21], [26], [27], [38]. The unsteady 
impulse, which is generated at the very beginning, vanishes after infinite time and the 
head of bone assumes a stationary position (see figure 2b). The diagrams of the 
distribution of time-dependent velocity and pressure are presented in figure 2c. Figure 2d 
shows the random effects of roughness and undulation caused by the random fibrillation 
of cartilage surfaces and by sclerosis of subchondral bone. The dimensionless gap height 
ε T1 depends on the variables ϕ and ϑ and the time t and consists of two parts [24], [36]: 

 ε T1 = ε T1s(ϕ, ϑ, t) + δ1(ϕ, ϑ, ξ ), (10) 

where ε T1s denotes a total dimensionless nominally smooth part of the area of thin 
fluid layer. This part of the gap height contains dimensionless corrections of gap 
height caused by the hyperelastic cartilage deformations. The symbol δ 1 denotes the 
dimensionless random part of the changes of gap height resulting from the vibrations, 
unsteady loading and surface roughness asperities of cartilage measured from a 
nominal mean level (see figure 2d). The symbol ξ describes the random variable, 
which characterizes the roughness arrangement. Expectancy operator is defined by: 

 ,)((*)(*)E 11 δδ dfk×= ∫
+∞

∞−

  (11) 

where fk describes a dimensionless function of the probability density. 
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Fig. 2. Lubrication region, eccentricities, gap height variations with the time after injury (a), 
position of bone head in stationary and impulsive motion (b), 

diagrams of pressure and velocity of synovial fluid distributions versus time (c), 
stochastic deformations of cartilage, results of impact and random roughness (d) 
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3. Optimization of standard deviation of gap height 

A real description of the gap height changes depends on the variations of cartilage 
surface. Random changes of cartilage surface are described by the probability density 
functions on the basis of comparison between the results of the experiments of this 
author and these reported by DOWSON and MOW [2], [17], [23] (see figures 3a, b, 
4a, b). The measurements of the changes on the sample surface (10 mm × 10 mm) of 
a pathological cartilage resting on the sphere (see figure 3a, b) of the head of bone in 
human hip joint have been performed with microsensor laser installed in Rank-Taylor-
Hobson-Talyscan-150 Apparatus and processed by means of the Talymap Expert and 
Microsoft Exel Computer Program. The measurements of the values of asperities on 
the sample surface (2 mm × 2 mm) of normal cartilage of the head of bone in human 
hip joint have been carried out with a mechanical sensor (figure 4a, b). A proper 
description of the random changes in a gap height depends on an appropriate selection 
of probability density function. As a criterion of estimation we choose the standard 
deviation. The probability density functions presented in figures 3c and 4c refer to the 
changes of cartilage surface caused by vibrations and roughness, respectively. We 
assume that the dimensionless distribution of probability density function for random 
changes of joint gap has the following sequential form [4], [24]: 
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where k = 1, 3, 5, 7, … Because the probability cannot be greater than unity, we have: 

 fk(δ1) ≤ 1 ⇒ mk1 ≤ ck1. (13) 

The symbol mk1 denotes the unknown constant values. The dimensionless 
coefficient ck1 indicates the limits of the random changes of the joint gap within the 
interval −ck1 ≤ δ1 ≤ ck1. The dimensional values are as follows: ck = ε0ck1, δ = ε0δ1. To 
determine the unknown dimensionless value mk1 we make use of the known property 
of the probability function [4], [24]: 
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We insert function (12) into formula (14) and assume a new dimensionless variable 
y1: 

 δ1 = y1ck1 ⇒ dδ1 = ck1 dy1. (15) 

Hence from equation (14) after simple calculations we obtain: 
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After integration from equations (14), (16) it follows: 
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From (17) we obtain: 
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The sequence of probability density functions and its limits are presented in 
Appendix 1. 

The standard deviation has the following form [24]: 
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Taking into account a new variable (15) we obtain: 
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We insert the result (17) into (22), and (22) into (19). Thus we obtain the sequence 
of standard deviations in the form: 
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By virtue of (23) and (18) we have: 
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The limits of standard deviations have the form (Appendix 2): 
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• If the vibrations and unsteady load cause random changes in the height of the 
joint gap, then the range of each probability density function of changes has a different 
value. Each probability density function assumes the value of unity in one point of its 
domain (figure 3c). In this case, we insert equation (18) into equation (12) or (A1.1) 
and obtain the following probability density functions and their standard deviations 
[22]: 
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The distributions of probability density functions and their standard deviations are 
presented in figure 3c. We can choose the function with the least standard deviation. 
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Fig. 3. Measurement of roughness on the sample surface (10 mm × 10 mm) of used and pathological 
cartilage taken from bone head of human hip joint (a). Longitudinal section of flattened surface 

of used joint cartilage of bone head with the asperity height of 1.4 mm measured by the laser sensor (b). 
Distributions of probability density functions of random changes of gap height 

of human hip joint caused by vibration and unsteady load on the cartilage surface (c) 
 

b) 

c) 

a) 
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Fig. 4. Measurement of roughness of a normal cartilage sample (2 mm × 2 mm) taken from bone head 
of human hip joint (a). Asperities of normal cartilage surface along the cross section 2-2 of 

a normal cartilage sample (b). Distributions of probability density functions of random changes of 
gap height of hip joint caused by asperities of roughness on the cartilage surfaces (c) 

a) 

b) 

c)  
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• If the random changes in the height of the joint gap are caused by the asperities 
of cartilage surface roughness, then the range of each of the probability density 
functions has the same value (see figure 4c). If we insert the dimensionless constant 
value ck1 = c1 = 693/512 = 1.353515 into the probability density functions (12) or 
(A1.1), then the probability density functions and standard deviations in the 
dimensionless form are as follows:  
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All the functions have positive values for 11 c<δ  and zero values for .11 c>δ  In 
this case, the distributions of probability density functions of gap-height changes are 
presented in figure 4c. The sequence of probability density functions tends to an 
optimal boundary function which takes the value of unity in the middle point of its 
domain. This function attains the least standard deviation. 

4. The method of integration applied to hydrodynamic problem 

We introduce a new dimensionless variable [14], [15], [25]: 
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and we assume solutions of the system (6)–(9) to be in the form of the following 
convergent series[3], [17]: 
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where t1 > 0, 0 < DeStr << 1, (DeStr/t1) < 1. In equations (6)–(8), we replace the 
derivatives with respect to the variables t1, r1 by the derivatives with respect to the one 
variable χ only, using the following relations: 
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Afterwards we insert the series (29)–(32) into the changed system (6)–(9), where 
the variables t1, r1 are replaced by the variable χ. Moreover, we equate the terms 
multiplied by the same powers of the parameter (DeStr/t1)k for k = 0, 1, 2, ... Thus we 
obtain the following sequence of systems of ordinary differential equations: 
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where i = ϕ, ϑ; αϕ ≡ ϕ, αϑ ≡ ϑ1 and: 

 (Nϕ)2 ≡ N 2sin(ϑ1),  Nϑ ≡ N . (39) 



Hip joint lubrication after injury 63 

5. Final solutions for unsteady lubrication 

The general and particular solutions for the ordinary differential equations (36) 
under proper boundary conditions have been derived in Appendix 3. We insert 
constants (A3.9) into general solution (A3.1) for synovial fluid velocity components. 
Hence the synovial fluid velocity components (29), (30) in circumference and 
meridional directions have the following final forms: 
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0 ≤ χ1 ≤ εT1N,   χ = Nr1,   N ≡ 0.5(StrReψ)0.5, 

0 < t1 < ∞,   0 ≤ r1 ≤ εT1,   π/8 ≤ ϑ1 ≤ π/2,   0 < ϕ < 2πθ1,   0 ≤ θ1 < ∞.  

By virtue of solutions (40), (41), the particular velocity components of synovial 
fluid in ϕ and ϑ directions for unsteady flow have the following dimensionless forms: 
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and 0 ≤ t1 < ∞, 0 ≤ r1≤ εT1, π/8 ≤ ϑ1≤ π/2, 0 < ϕ < 2πθ1, 0 ≤ θ1 < ∞, 0 ≤ χ2 ≤ χ1 ≤ χ ≡ 
r1N ≤ εT1N ≡ M, εT1 = εT1(ϕ, ϑ1, t1). We insert the velocity components (42), (43) into 
the continuity equation (9) and integrate both sides of this equation with respect to the 
variable r1. The component of the synovial fluid velocity vr 0Σ in the gap-height 
direction equals zero on the surface of the head of bone. Therefore after imposing the 



K. CH. WIERZCHOLSKI 64 

boundary condition vr 0Σ = 0 for r1 = 0, the synovial fluid velocity component in the 
gap-height direction has the following form: 
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(46)

 

where: 0 ≤ t1 < ∞, 0 ≤ r2 ≤ r1 ≤ εT1, π/8 ≤ ϑ1 ≤ π/2, 0 < ϕ < 2πθ1, 0 ≤ θ1 < 1, 0 ≤ χ2 ≤ χ1 

≤ χ ≡ r1N ≤ εT1N ≡ M. 
The component of the synovial fluid velocity vr 0Σ in the gap-height direction does 

not equal zero on the acetabulum surface. Therefore integrating the continuity 
equation (9) with respect to the variable r1 and imposing the boundary condition 
(A3.7) for r1 = ε1 on the velocity component in gap-height direction and taking into 
account conditions (A3.6) for r1 = 0, we arrive at the following equation: 
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6. Stochastic Reynolds equation 

If we insert expressions (42)–(43) into (47) and take the expected values of both 
sides of equation (47), then we obtain the following modified Reynolds equation: 
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where: 
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and εT1 = εT1s(ϕ, ϑ1, t1) + δ1, 0 ≤ r2 ≤ r1 ≤ εT1, 0 ≤ ϕ < 2πθ1, 0 ≤ θ1 < 1, π/8 ≤ ϑ1 ≤ π/2, 0 
≤ t1 < ∞, 0 ≤ χ2 ≤ χ1 ≤ εT1N, 0 ≤ N(t1) = 0.5(Res/t1)0.5 < ∞.The modified Reynolds 
equation (48) determines an unknown time-dependent pressure function p10(ϕ, ϑ1, t1) 
with stochastic changes. 

By using the optimal function of probability density distribution f5
* ≡ f1 for the 

stochastic gap-height changes caused by the roughness (see equation (27)), a mean 
value of total film thickness E(εT1) and a mean value of pressure function E( p10) can 
be presented based on the expectancy operator in the following form [24]: 
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where the symbol c1 = 1.353515 denotes the half total range of random variable of the 
thin layer thickness for normal hip joint (figure 4c). The symbol σ1 = 0.37539 is the 
dimensionless standard deviation. To obtain a dimensional value of the standard 
deviation σ we must multiply σ1 by the characteristic value of gap height ε0 = 10⋅10–6 m. 
In this case, the dimensional standard deviation equals 3.7 µ. Based on the measurements 
we found that the value of standard deviation for normal cartilage approached 3.5 µ. 

Taking into account equation (51) we can write equation (48) in the form: 
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where −c1 ≤ δ1 ≤ c1, 0 ≤ ϕ ≤ 2π, π/8 ≤ ϑ1 ≤ π/2. We expand the function J into the 
Taylor series in the neighbourhood of the point δ1 = 0 in the following form: 
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Integrating the functions with respect to the variable δ1 in equation (52) we obtain: 
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The function I(εT1N) assumes the form: 
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where: 
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The time-dependent gap height with perturbations and stochastic changes can be 
represented by the following equation: 

 εT1 = εT1s(ϕ, ϑ1, t1) + δ1 = εT1s(ϕ, ϑ1) [1 + s1 exp(−t0 t1ω0)] + δ1. (64) 

The time-independent value of the smooth part of the gap-height can be expressed 
in a dimensional form: 

ε0 εT1s(ϕ, ϑ1) = εTs(ϕ, ϑ1) ≡ ∆ε1cosϕ sinϑ1 + ∆ε2 sinϕ sinϑ1 − ∆ε3 cosϑ1 − R 

  + [(∆ε1cosϕ sinϑ1 + ∆ε2 sinϕ sinϑ1 − ∆ε3 cosϑ1)2 + (R + εmin)(R + 2D + εmin)]0.5. (65) 

We assume the centre of spherical bone head to be in the point O(0,0,0) and the 
centre of spherical cartilage in the point O1(x − ∆ε1, y − ∆ε2, z + ∆ε3). The eccentricity 
has the value of D (see figure 2). 

The dimensionless function s1 = s(ϕ, ϑ1s)/εTs(ϕ, ϑ1) at ϑ1s ≡ ϑ s/R, ϑ1 ≡ ϑ /R 
describes the changes in the gap height during the impulsive motion caused by the 
force P. The gap height increases if s1 > 0 and decreases if s1 < 0. The symbol ω0 
stands for an angular velocity in s–1 and describes the time-varying perturbations in 
unsteady flow of synovial fluid in joint gap in the height direction. If t1 increases, then 
an enlarged gap-height decreases at s1 > 0, and in a sufficiently long time after impulse 
it attains the same, time-independent value εTs. If dimensionless time t1 decreases, then 
the reduced gap-height increases at s1 < 0. In sufficiently long time after impulse, the 
gap attains the same time-independent value εTs (figure 2). 

If t1 tends to infinity, i.e. N tends to zero, then equation (55) tends to a classical 
Reynolds equation, provided that the conditions are random. To explain this fact we 
calculate the following limits:  












−≡= ∫∫→→

χχεχχχεχ
εε

dNd
N

NY
N

NN

N
sT

N

sTsT

)exp()(erf)(erf)exp(
2
π

lim)(
2
π

lim
11

0

2
1

0

2
20

120
 








































−−












−= ∫∫∫ ∫→

χχχχχχχχ
εεε χ

dddd
N

NNN

N

sTsTsT

)exp()exp()exp()exp(1
lim

111

0

2

0

2

0 0
1

2
1

2
20

  



K. CH. WIERZCHOLSKI 68 

 .
2)exp(2)exp(

)exp(
lim2)exp(2

)exp(

lim
2
1

22
1

22
1

22
1

22
1

0

2
1

22
1

0
1

2
11

0

1

sT

sTsTsT

sT

N

sT
H

sT

N

sT

N

H

NNN
N

NN

d
sT

ε
εεε

εε
ε

χχε
ε

−=
+

−=−=
→→

∫
 (66) 

The above limits are obtained after the Hospital rule application. If the following 
limits:  
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and the other limits presented in Appendix 4 are taken into account, then equation (55) 
at N → 0 tends to the following form: 
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After final calculations, we obtain the following form of the classical Reynolds 
equation in the spherical coordinates but in random conditions: 
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where 0 ≤ ϕ < 2πθ1, 0 ≤ θ1 < 1, π/8 ≤ ϑ1 ≤ π/2. 
Equation (69) determines a time-independent pressure function with stochastic 

changes. If the standard deviation tends to zero (σ1 → 0), then equation (69) tends to 
the classical Reynolds equation for stationary flow without random conditions.  

7. Numerical calculations 

In the case of impulsive motion, the dimensionless pressure p10 and its 
dimensionless corrections p11, p12, … in the lubrication region Ω {0 ≤ ϕ < π, π/8 ≤ ϑ1 

≤ π/2} are determined. The pressure p10 is determined by virtue of the modified 
Reynolds equations (48), (55) by taking into account the gap height (64), (65). 
Numerical calculations are performed for [22]: the radius of spherical bone head R = 
0.0265 m, the angular velocity of the impulsive perturbations of acetabulum ω0 = 0.4 
s–1, a characteristic dimensional time t0 = 0.000001 s. The gap height (64), (65) is 
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taken into 
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Fig. 5. Dimensionless hydrodynamic pressure distributions inside the gap of human spherical hip joint 
in the region Ω : 0 ≤ ϕ ≤ π, πR/8 ≤ ϑ ≤ πR/2 without stochastic changes (σ1 = 0) in the dimensionless 

time: t1 = 1 (i.e. t = 0.000 001 s), t1 = 1000 000 (i.e. t = 1 s), t1 = 100 000 000 (i.e. t = 100 s) 
after the impulse occurrence for the increasing (decreasing) effects of gap-height changes 

(the right (left) columns of the figures, respectively). The results are obtained at the following data: 
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R = 0.0265 m; η0 = 0.60 Pas; ρ = 1010 kg/m3; ε 0 = 10 µm, ∆ε1 = 4 µm; ∆ε 2 = 0.5 µm; ∆ε 3 = 3 µm; 
ψ ≡ ε0 /R = 3.8⋅10−4; ω = 1.0 s−1; ω0 = 0.4 s−1; Str = 1 000 000; Re⋅Str = 0.168; De ⋅Str = 0.833 
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Fig. 6. Dimensionless hydrodynamic pressure distributions inside the gap of human spherical hip joint 
in the region Ω: 0 ≤ ϕ ≤ π, πR/8 ≤ ϑ ≤ πR/2 for stochastic changes at the standard deviation σ1 = 0.375 

(i.e. 0.37 µm) in the dimensionless time: t1 = 1 (i.e. t = 0.000 001 s), t1 = 1000 000 (i.e. t = 1 s), 
t1 = 100 000 000 (i.e. t = 100 s) after the impulse occurrence for the increasing (decreasing) effects of 

gap-height changes (the right (left) columns of the figures, respectively). The results are obtained for the 
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following data: R = 0.0265 m; η0 = 0.60 Pas; ρ = 1010 kg/m3; ε 0 = 10 µm, ∆ε1 = 4 µm; ∆ε2 = 0.5 µm; 
∆ε3 = 3 µm; ψ ≡ ε /R ≈ 3.8⋅10−4; ω = 1.0 s−1; ω0 = 0.4 s−1; Str = 1 000 000; Re⋅Str = 0.168; De ⋅Str = 0.833 

account, where such eccentricities of bone head as ∆ε1 = 4.0 µm, ∆ε2 = 0.5 µm, ∆ε3 = 
3 µm are assumed. In the calculations, we take the optimal dimensionless standard 
deviation σ1 = 0.375. We assume that the dynamic viscosity of synovial fluid η0 is 
0.60 Pas, a pseudo-viscosity coefficient β = 0.000 0005 Pas2, the density of synovial 
fluid ρ = 1010 kg/m3, the angular velocity of spherical bone head ω = 1.0 s–1, the 
minimum value of gap height min(εT1s) changes within the time interval of 0.000001 s 
≤ t ≤ 100 s and attains the values within the range from 0.435 (4.3 µm) to 0.726 (18.2 
µm). An average relative radial clearance ψ ≡ ε0 /R = 3.8⋅10−4. The characteristic 
dimensional pressure p0 = ωη0/ψ2 reaches the value of 4.2135 MPa. A characteristic 
dimensional gap height ε0 = 10 microns and the Strouhal number Str = 106, Re⋅Str = 
0.168, De⋅Str = 0.833. In this case, we have 0 ≤ β/η0t < 1. For the dimensionless 
times: t1 = 1, t1 = 1000, t1 = 100 000, t1 = 1000 000, t1 = 10 000 000, t1 = 100 000 000, 
i.e. for dimensional times: t = 0.000 001 s; t = 0.001 s; t = 0.1 s; t = 1.0 s; t = 10.0 s; 
t = 100.0 s, respectively, and for s1 = ±0.25 we obtain the distributions of dimension-
less pressure (figures 5 and 6). To obtain real values of time, we must multiply the 
dimensionless values t1 by a characteristic time value t0 = 0.000001 s, for example, 
t1 = 1000 000 denotes 1 s after an impulse. To obtain a dimensional value of pressure, 
we must multiply the dimensionless values of pressure (see figures 5 and 6) by 
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Fig. 7. Dimensional values of capacity versus dimensional time in the range from 10−6 second to 
100 seconds after impulse inside the gap of human spherical hip joint in the region Ω : 0 ≤ ϕ ≤ π, 
πR/8 ≤ ϑ ≤ πR/2 for stochastic changes of roughness of cartilage surface at the standard deviation 

σ1 = 0.375 (i.e. 0.37 µm) and without random effects at σ1 = 0. The results are obtained for the following 
data: R = 0.0265 m; η0 = 0.60 Pas; ρ = 1010 kg/m3; ε 0 = 10 µm; ∆ε 1 = 4 µm; ∆ε 2 = 0.5 µm; 
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∆ε 3 = 3 µm; ψ ≡ ε 0/R = 3.8⋅10−4; ω = 1.0 s−1; ω0 = 0.4 s−1; t0 = 0.000 001 s; Str = 1 000 000; 
Re⋅Str = 0.168; De ⋅Str = 0.833 

a characteristic value of pressure p0. Figure 5 presents the dimensionless values of 
pressure without random effects at σ1 = 0. Dimensionless values of pressure given in 
figure 6 are obtained for stochastic changes of gap height at σ1 = 0.375. The 
distributions of dimensionless pressure at s1 > 0 presented on the right-hand side of 
figures 5 and 6 are obtained for an enlargement effect of gap height caused by 
impulsive motion. If in this case the time after an impulse lenghtens, the gap height 
decreases and pressure increases, and in a sufficiently long time after impulse the latter 
tends to the time-independent pressure. The pressure distributions presented for s1 < 0 
on the left-hand side in figures 5 and 6 are obtained for the limited effects of gap 
height caused by impulsive motion. If in this case the time after the impulse is 
lenghtened, the gap increases and the pressure decreases, and in a sufficiently long 
time after impulse the latter tends to the time-independent pressure. Figure 7 presents 
the dimensional value of capacity versus the dimensional time ranging from the 
beginning of the impulse to 100 seconds after the impulse. 

8. Conclusions 

• If the trauma is responsible for an increase in the gap height (s1 > 0) of a normal 
joint, then in the time just after impulse the gap height decreases and the pressure 
increases. In a sufficiently long time after impulse, the gap-height and the pressure 
attain time-independent values. 

If the trauma is responsible for a decrease in the gap height (s1 < 0), then in the 
time after impulse the gap height increases and the pressure decreases. In a sufficiently 
long time after impulse, the gap height and the pressure attain time-independent 
values.  

• If the time after the impulse occurrence is long enough, i.e. t1 → ∞, and if we 
take the optimal standard deviations of gap height, then the pressure distributions 
tend to the identical pressure distributions for the increasing (s1 > 0) and decreasing 
(s1 < 0) effects of the gap height changes caused by the impulse. This limit pressure 
distribution can also be obtained based on the classical Reynolds equation (67) for 
σ1 = 0. 

• From the numerical calculations we conclude that the pressure and capacity of 
the joint obtained at the optimal standard deviation σ1 = 0.375 by virtue of the 
measurements of normal cartilage surfaces of the human hip joint decrease by about 
30% in comparison with the pressure and capacity obtained for smooth cartilage 
surface without asperities and random effects. 
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• The numerical calculations show that the biggest changes of pressure distribution 
and capacity in human joint occur within the time interval from 0.1 to 10 seconds after 
impulse. 
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Appendix 1 

The probability density functions (12) have the forms: 
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The function of the order k presented in (A1.1) for k = 1, 3, 5, … can be given in the form: 
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From equations (13), (16), (17) it follows [14]: 
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and D denotes the Dirac function. 
We insert (A1.3) into (A1.2), hence if k tends to infinity, we obtain: 
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A new variable K ≡ ck1/δ1 tends to infinity, if k tends to infinity. Hence by using the result (A1.3), we 
arrive at the limit (A1.5) in the following form:  
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By using a new variable x1, the cumulative function in infinity obtains the form: 

 .πfor1
π

1)( 1111
π

11
2
1

2
1 δδδδ δ ≡=== ∫∫∫

+∞

∞−

−
+∞

∞−

−
+∞

∞−
∞ xdxededf x  (A1.7) 

Appendix 2 

• The first proof. If k tends to infinity, then by virtue of limit (A1.6) and formulae (19)–(21) the 
boundary value of standard deviation has the form: 
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Its integration by parts gives: 
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Using the new variable x1 in integrals (A2.2), we obtain: 
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By using expression (A2.3), the boundary value of standard deviation (A2.1) has the form: 

 ...4418.0
π2

1
1 ==∞σ  (A2.4) 

• The second proof. We insert the result (16) into (22), and (22) into (19). Hence we obtain the 
standard deviation in the following form: 
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After simple mapping we have: 
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By virtue of (A1.3), (A1.4) we can write the formula (A2.6) in the following form: 
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The limit (A2.7) is obtained after the Hospital rule application. 

Appendix 3 

The general solutions of ordinary differential equations (36) for i = ϕ, ϑ have the form: 

 vi0Σ (χ ) = Ci1v01(χ ) + Ci2 + vi 03 (χ )   for   i = ϕ, ϑ, (A3.1) 

where Ci1, Ci2 are integral constants. The particular solutions of homogeneous and nonhomogeneous 
differential equations are as follows: 
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where 0 ≤ χ1 ≤ χ ≡ r1N. If t1 → 0, then N → ∞, thus χ → ∞. If t1 → ∞, then N→0. Hence for r1 > 0 we 
have χ → 0. For t1 > 0 and r1 = 0 we have χ = 0. The following limits are true: 

v01(χ ) = π0.5/2  for χ → ∞,  t1 → 0,  N → ∞;  v01(χ ) = 0,  for χ → 0,  r1 = 0,  0 < t1 < t2 < ∞,  N > 0; 

vi03(χ ) = 0  for χ → 0,  r1 = 0,  0 < t1 < t2 < ∞,  N > 0,  i = ϕ, ϑ; 

 v01(χ ) = 0   for χ → 0,  r1 > 0,  t1 → ∞,  N → 0; (A3.4) 
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The spherical bone head moves in circumferential direction ϕ only. Hence the synovial fluid velocity 
components on the surface of bone head in circumferential direction are equal to the peripheral velocity 
of spherical surface of bone head. The synovial fluid velocity component on a spherical bone head 
surface in a meridional direction ϑ equals zero, because spherical bone head is motionless in the direction 
ϑ. Viscous synovial fluid flows around the bone head. Hence on its surface the synovial fluid velocity 
component in the gap-height direction equals zero. 

Therefore we have the following boundary conditions:  

vϕ 0 Σ (χ = 0) = sinϑ 1,     vϑ 0 Σ (χ = 0) = 0,     vr 0 Σ (χ = 0) = 0 

 for r1 = 0 ⇔ χ = 0     and     0 < t1 < t2 < ∞,     N > 0. 
(A3.6)

 

The spherical acetabulum surface is motionless in circumferential and meridional directions. But 
spherical acetabulum has any vibrations in the gap-height direction. Hence the gap height changes with time. 
Thus synovial fluid velocity components on the acetabulum surface are equal to zero in circumferential and 
meridional directions. The synovial fluid velocity component in gap-height direction r is equal to the first 
derivative of the gap height with respect to the time. Hence we have the following boundary conditions: 

vϕ 0 Σ (χ = M ) = 0,  vϑ 0 Σ (χ = M ) = 0,  vr 0 Σ (χ = M ) = Str∂ε T 1 /∂ t 1; 

 r1 → ε1 ⇔ χ → NεT1 ≡ M  and  0 < t1 < t2 < ∞,  N > 0 , 
(A3.7)

 

where: ε T = ε 0 ε 1 T – the gap height, ε T 1 – the dimensionless total gap height, Str ≡ 1/ωt 0. 
Imposing conditions (A3.7), (A3.6) on the general solution (A3.3) we obtain: 

Cϕ 1 v 0 1(χ  = 0) + Cϕ 2 + vϕ 0 3 (χ  = 0) = sinϑ1   for r1 = 0, 

 Cϕ 1 v 0 1 (χ = M ) + Cϕ 2 + vϕ 03(χ = M ) = 0   for r1 = ε T 1, (A3.8) 

Cϑ 1 v 0 1(χ = 0) + Cϑ 2 + vϑ 0 3 (χ = 0) = 0   for r1 = 0, 

Cϑ 1 v 0 1(χ = M ) + Cϑ 2 + vϑ 0 3(χ = M ) = 0   for r1 = ε T 1. 

Taking into account limits (A3.4), (A3.5), the system of equations (A3.8) has the following 
solutions: 
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Appendix 4 

We calculate the following limits: 
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hence: 
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