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Hip joint lubrication after injury
in stochastic description
of optimum standard deviations
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The lubrication parameters of rough and used cartilage surface in human hip joint changes suddenly
after its injury. Stochastic changes of the roughness of the surfaces of the head of bone and stochastic
changes of the load imply the random changes of gap height. Hence, the pressure distributions and
capacity as well as friction forces and friction coefficients radically decrease or increase in several
microseconds after trauma. These changes are very difficult to measure, hence an appropriate numerical
research in this field is very important. In order to obtain correct numerical results, we have to perform
calculations using stochastic description with optimum standard deviations.
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1. Preliminaries

This paper presents the lubrication of human hip joint under stochastic, unsteady
and impulsive conditions. The problem of lubrication of human hip joint after injury
under random conditions has not been presented in the papers mentioned in the
references: [2], [5]-[9], [13], [16]-[20], [23], [28], [29], [37]. New values of capacities
of human hip joint occurring several microseconds after injury very often affect
further development of disease or damage to the joint caused by trauma. Therefore the
knowledge of lubrication parameters on the grounds of random conditions, for
example the changes observed several microseconds after trauma, is necessary for
further diagnosis and therapy. The concentrated force P applied onto the external
surface of tissue causes an injury to human hip joint.

If the concentrated force P is not great, then the deformations of human body and
deformations of rough joint cartilage generate only small changes in gap height of
human hip joint (see the head of bone in figure 1a). If the concentrated force is
sufficient, e.g. it amounts to 10 P, we can observe a dislocation of the head of bone of
human hip joint (figure 1b).
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Figure lc presents early degenerative changes of articular cartilage in human hip
joint, while in figure 1c¢ the narrowing of hip gap height is indicated.

front

joint gap

Fig. 1. Negligibly small gap-height changes caused by the force P in human hip joint (a),
dislocation of bone head of right hip joint caused by the force 10xP (b),
gap space of a joint gap with early degenerations of joint surfaces caused by the fibrillations of cartilage,
after Buckwalter, Clinical Symposia, 1995, Vol. 47, 2,
1 — surface fibrillations of cartilage, 2 — early disruptions of matrix molecular framework,
3 — superficial fissures, 4 — roughened articular surfaces and minimal narrowing of joint gap,
5 —sclerosis of subchondral bone (c)

We assume that the semi-infinite region of the sclerosis of subchondral bone (see
figure 1c) is occupied by a deformable tissue medium.
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2. Governing equations and deformations of gap height

Synovial fluid flow in the gap of a human hip joint is described by the equation of
conservation of momentum and the equations of continuity. These equations and the
second-order approximation of the general constitutive equation given by Rivlin and
Ericksen can be written in the following form:

DivS = pdv/dt, divv=0, S=-pl+ mA,+ a(A)+ pA,, (1)

where: S is the stress tensor, p is the pressure, I stands for the unit tensor, A; and A,
are the first two Rivlin—Ericksen tensors, 7, «, f are three material constants of
synovial fluid, and 7 denotes the viscosity. The tensors A; and A, are given by
symmetric matrices defined by [21], [27]:

A=L+L" A,=grada+ (grada)’+2LL, aELv-i-%, 2)
where: L is the tensor of gradient fluid velocity vector (s'), L” is the tensor for the
transpose of a matrix of gradient vector of an oil (s'), v stands for the velocity (m/s),
t is the time (s), and a is the acceleration vector (m/s).

It is assumed that the product of the Deborah and Strouhal numbers, i.e. DeStr, and
the product of the Reynolds number, dimensionless clearance, and the Strouhal
number, i.e. ReyStr, are of the same order. Moreover, DeStr >> A, = aw/n,, where
o is the angular velocity of the head of bone. We assume additionally rotational
motion of a human head of bone at the peripheral velocity U = @R, unsymmetrical,
unsteady synovial flow in the gap, viscoelastic and unsteady properties of synovial
fluid, constant density p of the synovial fluid, characteristic value of the gap height &,
of hip joint, no slip on the bone surfaces, and R — the radius of the head of bone [30]-
[36]. We also assume the relations between dimensional and dimensionless quantities
to be in the following form:

r=~&or, 19:R191, t=1tot, Er= Eo€TI, Vo= UV¢,1,
3)
vi=Upva, vo=Uvg, p=pw1, po=UnoR/(s)

and the Reynolds number, the modified Reynolds number, the Strouhal and Deborah
numbers are as follows:

Re=pUsy/n, Rew= pas,)’/ny, Str=R/Ut, De=pU/noR, 4)
DeStr= fInoto, RewStr= p(&o)’/noto. (5)

In the case of synovial fluid, the inequality 0 < f/t, < 7 is valid and the values of
pseudo-viscosity 4 range mostly from 0.0001 to 0.1000 Pas>.The dimensionless
symbols are marked with the subscript 1. Neglecting the terms representing a radial
clearance y = &0/R ~ 107 in the governing equations expressed in the spherical
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coordinates r, ¢, & and taking into account the above-mentioned assumptions, we have
[25]:

0 P PE
Repsw oL, 0P g Ot ©
of  sing Op Or\ O ot,or,
9
O~ o g
1
3
Rel//Str%:—%—{—i % + DeStr 0 VSIZ , (8)
or, 08 on | on t,0n
%+sin(9)6v’1+i[v sin(9,)]=0 ©)
L) 1 o, 09, 91 1 ’

where: 0 < p<210,0< 6, <1, /8 < % <7w/2,0<r < éen, &n is the dimensionless
total gap height. The symbols vy, v.1, vei denote the components of dimensionless
synovial fluid velocity in circumferential, gap-height and meridional directions of
bone head, respectively.

Figure 2a shows the changes in the space of joint gap height caused by vibrations in
unsteady impulsive motion [1], [3], [10]-[12], [21], [26], [27], [38]. The unsteady
impulse, which is generated at the very beginning, vanishes after infinite time and the
head of bone assumes a stationary position (see figure 2b). The diagrams of the
distribution of time-dependent velocity and pressure are presented in figure 2c. Figure 2d
shows the random effects of roughness and undulation caused by the random fibrillation
of cartilage surfaces and by sclerosis of subchondral bone. The dimensionless gap height
&7 depends on the variables ¢ and 9 and the time ¢ and consists of two parts [24], [36]:

&n= STU((D, 19, t) + 51(¢: 199 5): (10)

where &7, denotes a total dimensionless nominally smooth part of the area of thin
fluid layer. This part of the gap height contains dimensionless corrections of gap
height caused by the hyperelastic cartilage deformations. The symbol J; denotes the
dimensionless random part of the changes of gap height resulting from the vibrations,
unsteady loading and surface roughness asperities of cartilage measured from a
nominal mean level (see figure 2d). The symbol & describes the random variable,
which characterizes the roughness arrangement. Expectancy operator is defined by:

E()= [()% £,5)d5, (11)

where f; describes a dimensionless function of the probability density.
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Fig. 2. Lubrication region, eccentricities, gap height variations with the time after injury (a),
position of bone head in stationary and impulsive motion (b),
diagrams of pressure and velocity of synovial fluid distributions versus time (c),
stochastic deformations of cartilage, results of impact and random roughness (d)
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3. Optimization of standard deviation of gap height

A real description of the gap height changes depends on the variations of cartilage
surface. Random changes of cartilage surface are described by the probability density
functions on the basis of comparison between the results of the experiments of this
author and these reported by DOWSON and Mow [2], [17], [23] (see figures 3a, b,
4a, b). The measurements of the changes on the sample surface (10 mm x 10 mm) of
a pathological cartilage resting on the sphere (see figure 3a, b) of the head of bone in
human hip joint have been performed with microsensor laser installed in Rank-Taylor-
Hobson-Talyscan-150 Apparatus and processed by means of the Talymap Expert and
Microsoft Exel Computer Program. The measurements of the values of asperities on
the sample surface (2 mm x 2 mm) of normal cartilage of the head of bone in human
hip joint have been carried out with a mechanical sensor (figure 4a, b). A proper
description of the random changes in a gap height depends on an appropriate selection
of probability density function. As a criterion of estimation we choose the standard
deviation. The probability density functions presented in figures 3c and 4c refer to the
changes of cartilage surface caused by vibrations and roughness, respectively. We
assume that the dimensionless distribution of probability density function for random
changes of joint gap has the following sequential form [4], [24]:

My 2 2\k
—(c;; — O, for—c,, <O, <+c,,,

fk(é‘l) = cilk_,_l ( k1 1 ) k1 1 k1 (12)
0 for |6]> ¢y,

where k=1, 3, 5, 7, ... Because the probability cannot be greater than unity, we have:
ﬁ{(é‘]) <l= mp < cyy. (13)

The symbol my, denotes the unknown constant values. The dimensionless
coefficient ¢4 indicates the limits of the random changes of the joint gap within the
interval —c;; < 61 < ¢i1. The dimensional values are as follows: ¢, = gyci1, 0= €0 01. To
determine the unknown dimensionless value m;; we make use of the known property
of the probability function [4], [24]:

3

[f6)ds =15 [ f.5)ds =1. (14)

—Cr1

We insert function (12) into formula (14) and assume a new dimensionless variable
Yi-
O1= y1Cn = do1= ¢ dy). (15)

Hence from equation (14) after simple calculations we obtain:
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+1 -l
mk1=[j(l—yf)"dyl] : (16)
-1
After integration from equations (14), (16) it follows:
1 k ( 1)5 -l
m, 2{§2s+1(5!(k—5)!ﬂ <c,, k=1,3,57,. (17)
From (17) we obtain:
Mg T3 T st T 40067 (18)

¢, 207500, ¢;, 2109375, c5, 2135315, ¢y, 21.571044,...

The sequence of probability density functions and its limits are presented in
Appendix 1.
The standard deviation has the following form [24]:

o =\EX)-E}(X). (19)

The expectancy operators are defined as follows[4], [24]:

k
+00 m 52
E(X)= j 5, i{l——;] ds, =0, (20)
S Cr Cr
st
E(X )_ J. 62 mkl( j dé‘l (21)
3| Ck1

Taking into account a new variable (15) we obtain:

S (=D K

1
2y _ 2 (201 _ 2V gy — 2
By =2myeh [ 0D dn =omeel 2005y @D

We insert the result (17) into (22), and (22) into (19). Thus we obtain the sequence
of standard deviations in the form:

for k=1,3,517,.. (23)

By virtue of (23) and (18) we have:
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The limits of standard deviations have the form (Appendix 2):
1
im o, = . 25
kl_f)l;lo k1 \/ﬂ (25)

o If the vibrations and unsteady load cause random changes in the height of the
joint gap, then the range of each probability density function of changes has a different
value. Each probability density function assumes the value of unity in one point of its
domain (figure 3c). In this case, we insert equation (18) into equation (12) or (Al.1)

and obtain the following probability density functions and their standard deviations
[22]:

45, Y
1-|— for |51|£+3/4, 3/4
fi(6)= 3 on=re =0.336;

0 for |6,[>3/4,

P 3
) [1-[%) } for |8 <+35/32=1.09375, 35 o seasss
= G = ——— =
3\™1 31 32 l9

for |5,|>1.09375,

5
J5(6)) {1 (5;35] ] |§|<+%_1 333305, 093 _ 375397
= Oy = =0. ;
5\ 51 512\/5
0 for |6 >1.353515,
1- 40965 |5|<+6435 =1.571044, 6435
£(8) = 6435 4096 0, = ————=0.381034;
4096417
0 for |0,|>1.57,
) 1
_ "m0 — —
= for—wo<g, <o, o,=—7—=04418. 26
fl 1 1 \/E ( )

The distributions of probability density functions and their standard deviations are
presented in figure 3c. We can choose the function with the least standard deviation.
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Fig. 3. Measurement of roughness on the sample surface (10 mm x 10 mm) of used and pathological
cartilage taken from bone head of human hip joint (a). Longitudinal section of flattened surface
of used joint cartilage of bone head with the asperity height of 1.4 mm measured by the laser sensor (b).
Distributions of probability density functions of random changes of gap height
of human hip joint caused by vibration and unsteady load on the cartilage surface (c)
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Fig. 4. Measurement of roughness of a normal cartilage sample (2 mm x 2 mm) taken from bone head
of human hip joint (a). Asperities of normal cartilage surface along the cross section 2-2 of
a normal cartilage sample (b). Distributions of probability density functions of random changes of
gap height of hip joint caused by asperities of roughness on the cartilage surfaces (c)



Hip joint lubrication after injury 61

o If the random changes in the height of the joint gap are caused by the asperities
of cartilage surface roughness, then the range of each of the probability density
functions has the same value (see figure 4c). If we insert the dimensionless constant
value ¢ = ¢; = 693/512 = 1.353515 into the probability density functions (12) or
(Al1.1), then the probability density functions and standard deviations in the
dimensionless form are as follows:

2
. %(1—6—'2] for —¢ <6, <+¢, ,
S (6) =44 Ou =ﬁ

o =0.605310;
0 for |6,> ¢,

P 3
35 (1—5—1j for —c, <68, < +¢;, .

* P C
f5 (8))=132¢ cl o =Tl9=o.451171 ; (27)
0 for |51| >,
693 (| &Y
fi(8)=1512 [1--5} or-asosta, G 0375397
= c c o5 =——=0. .
5 1 1 1 51 \/E
0 for |§1|>cl,

All the functions have positive values for |§1| < ¢, and zero values for |51| >¢. In

this case, the distributions of probability density functions of gap-height changes are
presented in figure 4c. The sequence of probability density functions tends to an
optimal boundary function which takes the value of unity in the middle point of its
domain. This function attains the least standard deviation.

4. The method of integration applied to hydrodynamic problem

We introduce a new dimensionless variable [14], [15], [25]:

2=nN, NE% /@ {>0, 0<DetS”<1 28)
1 1

and we assume solutions of the system (6)—(9) to be in the form of the following
convergent series[3], [17]:

DeStr DeStr
v(pl = V(pOE(Za(oalgl)+t—v¢12(1a¢a’91)+(
1

2
j v(pZE(Zagoalgl)-i—"'a (29)

1
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2
DeStr DeStr
Vai :Vyoz(ﬂ(a(ﬂalgl)"‘t—Vslz(Z:(D:lgl)‘*‘(—] Vors (X0, %) +....  (30)
1 1
DeSt Destr\’
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1 1
DeSt DeStr)’
eStr eStr
)2 :p10(¢a‘917l1)+t—p11(¢7‘917t1)+( j P9, 9,0)+..., (32)
1 1

where ¢ > 0, 0 < DeStr << 1, (DeStr/t;) < 1. In equations (6)—(8), we replace the
derivatives with respect to the variables #,, #; by the derivatives with respect to the one
variable y only, using the following relations:

0 0 0Oy 1 NG, y O
—=—2=——JRey Str ———=-2— 33
on ogon, a4V N 21, dy 33)
0 _0(0)_0(2\ox_Rewsw & .
o on\on ) ox\ oy on )on 4, oyt

o’ _ O [ Rey Str o? __ Rey Str o* +Rez//Stri o? o

otorr o\ 4y oy’ a0y’ 4,  oy\ oy’ o,

__ Rey Sir 0 4 0’
4t12 oy 20y ) (35)

Afterwards we insert the series (29)—(32) into the changed system (6)—(9), where
the variables ¢, | are replaced by the variable y. Moreover, we equate the terms
multiplied by the same powers of the parameter (DeStr/t;)" for k=0, 1, 2, ... Thus we
obtain the following sequence of systems of ordinary differential equations:

2
d Vigf 12y dVios :Lzaplo ’ (36)
dy dy N oq,

d*v, dv, 1 op, d*v, d’v,
1;2 +2/,t, i1y +4(vi12):_2 P11 + 132 +l 122, (37)

dy dy N Oa; dy 2 dy

2 2 3
d vi;)? +2Zd;1'22 +8(Vi22): 1 a}712 +2d vilZ +lld vilE (38)

dy N2 ba,  dyt 27 dp
where i = ¢, §; a,= ¢, ag= 9 and:

(N,)>=N7sin(&), Ny=N. (39)
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5. Final solutions for unsteady lubrication

The general and particular solutions for the ordinary differential equations (36)
under proper boundary conditions have been derived in Appendix 3. We insert
constants (A3.9) into general solution (A3.1) for synovial fluid velocity components.
Hence the synovial fluid velocity components (29), (30) in circumference and
meridional directions have the following final forms:

sin g, + V¢03[Z =&, N]

v_ =sing — Y +v + O(DeStr), 40

ol 1 v()l[Z:ngN] 01 (%) ¢03(Z) ( ) (40)
% =&, N

Vo =—M\/01(;{)+v303(;()+0(DeStr), (41)
V01[Z=5T1N]

0< yi<enN, y=Nr, N=0.5(StrRey)’”,
0<l‘1<00, OSrlsgn, /8 < 191STE/2, 0< ¢<2TC91, 0< 91<00.

By virtue of solutions (40), (41), the particular velocity components of synovial
fluid in ¢ and @ directions for unsteady flow have the following dimensionless forms:

Vi 9
PO y(y=Ney)
2N“sin, Op
LefiN)  Vm apy

erf(g,N) 2N’sin8 0¢

Vr_opy,

v(pOZ(q):rlalglatl) =+sin n91 —{sin l91 -

Y(x = Nn), (42)

V302(¢,Yi,191,ll)= 2N2 6191 Y(}(ZN(?T])
erf(iN)  \m dpig
X - Y(y=Nr),
erf(Ney) 2N 0 ) K= (43)
X 5 V4 ,
Y(y) Eje’“ erfy,dy, —erf;(jel‘ dy,, (44)
0 0
1 |Rey Str 2%
N=— , erf = Cdy,, 45
3 (1) ﬁje P2 5)

and 0< (<0, 0SS gn, ML G2, 0< <2n6,0< 6, <0, 0 < < y=
N < enN =M, er = en(@, S, t1). We insert the velocity components (42), (43) into
the continuity equation (9) and integrate both sides of this equation with respect to the
variable »;. The component of the synovial fluid velocity v,os in the gap-height
direction equals zero on the surface of the head of bone. Therefore after imposing the
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boundary condition v,ox = 0 for 7, = 0, the synovial fluid velocity component in the
gap-height direction has the following form:

erZ((”arl"gl,tl)

Ne-ehV [agn Jr ( 1 ey, dpy | 06y, (3p10j 1 ]

Tt AN 5 % erfy.d
erf(WN)| dp 2 \sin’9, 0p 09 09 08 N .([ Hex

" 2 2

erf(nN) ir, ﬂ : 12 0 P;o +6 P;o +ap10 cot,
o erf(er V) 2 (sin” 9 O¢ 09 08
erf(rnN)

1
A—Y(y=hN
N? r=h )£ erf (i N)

dr — I Y(x =nN)dn, (46)
0

where: 0 <<, 0 <rm<r<e, /8 H<n2,0<p<2n6,0<6<1,0< < p
S}(EVINS ETlNEM.

The component of the synovial fluid velocity v,y in the gap-height direction does
not equal zero on the acetabulum surface. Therefore integrating the continuity
equation (9) with respect to the variable »; and imposing the boundary condition
(A3.7) for r; = g on the velocity component in gap-height direction and taking into
account conditions (A3.6) for ;= 0, we arrive at the following equation:

1 o7 1 oep,

0
vV oodry +———— | sin $vq,dr, =—=Str . 47
'('). 0N sind, 09, .!‘ Vaos@h o, 47)

sin§, %

6. Stochastic Reynolds equation

If we insert expressions (42)—(43) into (47) and take the expected values of both
sides of equation (47), then we obtain the following modified Reynolds equation:

_nz .1 E{—a {J(SHN) ap“’}}+ ““2 E{L{J(STIN) Pio sin&l}}
2N~ sin$ |0O¢ op 2N 08, 08
=—(sin$)E iH(gnN) —StrMsinSI, (48)
op ot

where:

J(enN)=W (e N)Y(eyN) - JT.IY(”lN)d’is H(enN) =& —W(epN), (49)

0
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€11

jerf(rl N)dr,

W(enN)= > (50)

0
erf(s7 N)

and e = 8]‘15(¢, 191, ll) + 51’ 0< mn<rn< Er1, 0< o< 27'C01, 0< 01 < 1, /8 < 191 < TC/2, 0
<H<w 0 < nenN, 0 <N = O.S(Res/tl)o‘5 < .The modified Reynolds
equation (48) determines an unknown time-dependent pressure function pio(@, %, )
with stochastic changes.

By using the optimal function of probability density distribution f;* = f; for the
stochastic gap-height changes caused by the roughness (see equation (27)), a mean
value of total film thickness E(&r) and a mean value of pressure function E( p1o) can
be presented based on the expectancy operator in the following form [24]:

¢

o, =—F==0.375, (51)

l_\/ﬁ

+00 ( —5—122J fOY—01351£+CI’
E(x)= [()x/(6)d5,, £(5)=

51
—00

0 for |51| >,

where the symbol ¢; = 1.353515 denotes the half total range of random variable of the

thin layer thickness for normal hip joint (figure 4c). The symbol oy = 0.37539 is the

dimensionless standard deviation. To obtain a dimensional value of the standard

deviation owe must multiply o by the characteristic value of gap height &y=10-10°m.

In this case, the dimensional standard deviation equals 3.7 . Based on the measurements

we found that the value of standard deviation for normal cartilage approached 3.5 p.
Taking into account equation (51) we can write equation (48) in the form:

Jn 1@ “‘[(1_52 P |, Vn 0

5
2N? sin, 0p _12] J (enN)}d(sl +

o op | 2N? 09

1 1

+e 2\
4 19| J(ep,N) a5, Prosin g,
c 09

-

+¢ 2\
= —(sin 191)%{ | [1—?—5} H(ngN)d51}

. 1

+Ll 2 5
- Sl‘l’i I [1 _5_j (715 +0)do, |sin g, (52)

1
ot | - cl

where —¢; < 8, < ¢y, 0 < @ <27, ©/8 < 9 < /2. We expand the function J into the
Taylor series in the neighbourhood of the point ¢; = 0 in the following form:
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2 2
J(epN) = J(ep Ny + S| P e | 0[O EnN) |y sy
e ), 2 e ),

2 2
H(ngN)zgm—W(,smN)+ﬂ OH(enN) ) 6 8L52T1N) ... (54)
nes, ), 2l et ),

Integrating the functions with respect to the variable ¢; in equation (52) we obtain:

ﬁzLi ](ngN) aplo + \/;2 i I(STIN) aplO Sin191
2N* sin O¢p Op | 2N° 08 09

0'_12 82W(871N)
20087

1

= —(sin gl)i{gm —W (e, N)— (8, =0)+ } _srPnsgin g, (s5)
op ot

The function /(&r;N) assumes the form:

2 2
](ngN)zJ(gmN)Jra—l‘(LgTzlmJ . (56)
20 et ),
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and
(Mj = 1= (67, NYW (7, V), (58)
3 )5

ers [ Nn
J. [je_ll d;(ljdrl
" Nexp(=N2g2,.
0 , W (ngyN) = p( Tls)

0
W(er,N)=——y,— e ) (59)
.[e_"‘zdzl J‘e_llzdﬂﬁ
0 0

oW (¢r, N . . .
(—8(5? )j =W (@ N) + 2ANep, + W (@ )W (e, VW (er ), (60)
1 8=0
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erisNV

2 A 2 2
Vo= | [e*i [e Mdzzjdzl—ﬁ [e#dn [efdr, 6D
0 0

erisNV e N

0 0

Er N
GY(ngN)J 2N e E
—_— =——e " T e dy, (62)
S -l

eV

2 _ 2 3 5 s )
(a Y(eTIN)j _ 2N AN v feran, ©3)
6,=0

+—&7,€
6512 \/; \/E Tls )

The time-dependent gap height with perturbations and stochastic changes can be
represented by the following equation:

en=ens(@, %, t) + 6= ens(@, H) [1 + 51 exp(—tot; wo)] + O. (64)

The time-independent value of the smooth part of the gap-height can be expressed
in a dimensional form:

& ens(@, H) = er(@, %) = Agicos@sinG; + Ag; sing sing — Ag; cos$ — R

+ [(Agicos@sind; + Ag, sing sing, — Agz cos 9’ + (R + &min)(R + 2D + &min)]™>. (65)

We assume the centre of spherical bone head to be in the point O(0,0,0) and the
centre of spherical cartilage in the point O (x — A&y, y — A&, z + Ag;). The eccentricity
has the value of D (see figure 2).

The dimensionless function s; = s(@, S5/ en(@, $) at G, = $/R, 4 = /R
describes the changes in the gap height during the impulsive motion caused by the
force P. The gap height increases if s; > 0 and decreases if s; < 0. The symbol @,
stands for an angular velocity in s and describes the time-varying perturbations in
unsteady flow of synovial fluid in joint gap in the height direction. If ¢, increases, then
an enlarged gap-height decreases at s;> 0, and in a sufficiently long time after impulse
it attains the same, time-independent value gr,. If dimensionless time ¢, decreases, then
the reduced gap-height increases at s5; < 0. In sufficiently long time after impulse, the
gap attains the same time-independent value ¢y, (figure 2).

If #; tends to infinity, i.e. NV tends to zero, then equation (55) tends to a classical
Reynolds equation, provided that the conditions are random. To explain this fact we
calculate the following limits:

. \/; ~ o \/E erigN ) . . erigN )
lim 5V (2 =enN)=lim 5| [exp(er(2)dy — erf(eN) [ exp(z)dz

N—0
- 0 0

=]13§10#{ ! {exp(;/)l exp(—zf)dzl}dz—[ | exp(—f)dzJ[ | eXp(Zz)dzJ}

0 0
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Nerig
2
ens | exp(xy)dy,
Z_ lim !)‘ Z _ £71s im exp(s7,,N?) __ &1 (66)
N0 2N eXp(gTZ'ISNZ) 2 No0 exp(‘giz"lsNz) + 2‘g%ls]vz exp(‘giz"lsNz) 2

The above limits are obtained after the Hospital rule application. If the following
limits:
Jr 2 &
im——Y(y, =Nn)=—L, 1imW(g; ,N)="1, 67
lim N (= Nry) 5 lim (&risN) 2 (67)

and the other limits presented in Appendix 4 are taken into account, then equation (55)
at N — 0 tends to the following form:

2 115 2 2 2
.1 O || _éns |Ens _ J- _h dr, + 2 m><0—2‘5'T15Xl*'@(—l)—(_gns) Pro
sing, d¢p 2 )2 0 2 20 2 22 o

2 £T1s 2 2 2
AN [ v L P [ =5 | + 2| e 0= 28, x 24 E08 L1y~ (—gy ) | [ Pising,
29, 2 )2 32 a2 2" 2 29,

er) 2
:—(singl)aa[j(l_ 4l Jdr1 +61><O:|_a(g”?)sin191. (68)
4

0 Er1s 2! a,

After final calculations, we obtain the following form of the classical Reynolds
equation in the spherical coordinates but in random conditions:
1 o 0

op opro . oe .
— (&3 +307 6 )L |+ ——| (63, +30 €. ) —Lsin g, |=6—L5sin g, (69)
SiIl ,91 6(0 |:( Tls 1 Tlo) a(p 6191 ( Tls 1 Tls) 8'91 1 a(p 1

where 0 < 9<2716,,0< 6, <1, /8 < $ < /2.

Equation (69) determines a time-independent pressure function with stochastic
changes. If the standard deviation tends to zero (o7 — 0), then equation (69) tends to
the classical Reynolds equation for stationary flow without random conditions.

7. Numerical calculations

In the case of impulsive motion, the dimensionless pressure p;, and its
dimensionless corrections pi;, pi2, ... in the lubrication region 2 {0 < p <, ©/8 < Y
< m/2} are determined. The pressure pjo is determined by virtue of the modified
Reynolds equations (48), (55) by taking into account the gap height (64), (65).
Numerical calculations are performed for [22]: the radius of spherical bone head R =
0.0265 m, the angular velocity of the impulsive perturbations of acetabulum @y = 0.4
s, a characteristic dimensional time #, = 0.000001 s. The gap height (64), (65) is
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Fig. 5. Dimensionless hydrodynamic pressure distributions inside the gap of human spherical hip joint
in the region €2: 0 < @ < 7, TR/8 < 9 < R/2 without stochastic changes (o7 = 0) in the dimensionless

time: £, = 1 (i.e. £=0.000 001 s), £, = 1000 000 (i.e. £ = 1 5), £,= 100 000 000 (i.e. £ = 100 s)

after the impulse occurrence for the increasing (decreasing) effects of gap-height changes
(the right (left) columns of the figures, respectively). The results are obtained at the following data:
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R =0.0265 m; 79 =0.60 Pas; p=1010 kg/m3; go=10 pum, Ag;=4 um; Ag,= 0.5 um; Agz =3 pm;
w=g/R=3.810" 0=1.05"; wy=0.4s"; Str=1000 000; Re-Str = 0.168; De -Str = 0.833
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Fig. 6. Dimensionless hydrodynamic pressure distributions inside the gap of human spherical hip joint
in the region 2 0 < p <, nR/8 < & < R/2 for stochastic changes at the standard deviation oy = 0.375
(i.e. 0.37 um) in the dimensionless time: ¢, =1 (i.e. = 0.000 001 s), #, = 1000 000 (i.e. =1 s),

t; =100 000 000 (i.e. £ = 100 s) after the impulse occurrence for the increasing (decreasing) effects of
gap-height changes (the right (left) columns of the figures, respectively). The results are obtained for the
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following data: R = 0.0265 m; 7, = 0.60 Pas; p= 1010 kg/m’; £y = 10 pm, Ag; =4 pm; Ag, = 0.5 pm;
Ag=3 pm; y=¢/R= 3.8~1074; o=1.0 sfl; wy=0.4 sfl; Str=1000000; Re-Str =0.168; De -Str =0.833

account, where such eccentricities of bone head as Ag = 4.0 um, A= 0.5 um, Ag =
3 um are assumed. In the calculations, we take the optimal dimensionless standard
deviation o3 = 0.375. We assume that the dynamic viscosity of synovial fluid 7, is
0.60 Pas, a pseudo-viscosity coefficient = 0.000 0005 Pas’, the density of synovial
fluid p = 1010 kg/m’, the angular velocity of spherical bone head @ = 1.0 s™', the
minimum value of gap height min(¢&r;) changes within the time interval of 0.000001 s
<t <100 s and attains the values within the range from 0.435 (4.3 um) to 0.726 (18.2
pum). An average relative radial clearance y = /R = 3.8-10*. The characteristic
dimensional pressure p, = wn/y’ reaches the value of 4.2135 MPa. A characteristic
dimensional gap height & = 10 microns and the Strouhal number Str = 10°, Re-Str =
0.168, De-Str = 0.833. In this case, we have 0 < f/nyt < 1. For the dimensionless
times: £, = 1, ¢, = 1000, #, = 100 000, #, = 1000 000, #; = 10 000 000, ¢, = 100 000 000,
1.e. for dimensional times: £ = 0.000 001 s; r=0.001s;¢t=0.1s;¢t=1.0s;¢=10.0s;
¢t = 100.0 s, respectively, and for s; = £0.25 we obtain the distributions of dimension-
less pressure (figures 5 and 6). To obtain real values of time, we must multiply the
dimensionless values #; by a characteristic time value 7, = 0.000001 s, for example,
t1=1000 000 denotes 1 s after an impulse. To obtain a dimensional value of pressure,
we must multiply the dimensionless values of pressure (see figures 5 and 6) by

3000
3 =-1/4; 5,=0 \
22500 ¢ SIT U O M
= g8 Si=-1/4;6=0.375
(=9
{32000 o 5= 1/4;5,=0 \
eo si=1/4;06,=0.375
1500 g iy iy py
& ! iy ! I
1000 g
500 L
1-10°  1-10°  1-10%  1-10° 001 0.1 1 10 100

Time t,t; [s]

Fig. 7. Dimensional values of capacity versus dimensional time in the range from 107 second to
100 seconds after impulse inside the gap of human spherical hip joint in the region 2: 0 < p < =,
nR/8 < < wR/2 for stochastic changes of roughness of cartilage surface at the standard deviation
01=10.375 (i.e. 0.37 um) and without random effects at o3 = 0. The results are obtained for the following
data: R =0.0265 m; 7= 0.60 Pas; p=1010 kg/m3; &o=10 um; Ag; =4 pum; Ag,= 0.5 pum;
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Asy=3pum; y=s/R=3.810" 0=1.0s"; wy= 0.4 s7'; t,=0.000 001 s; Str-= 1 000 000;
Re-Str=0.168; De -Str=0.833

a characteristic value of pressure p,. Figure 5 presents the dimensionless values of
pressure without random effects at o; = 0. Dimensionless values of pressure given in
figure 6 are obtained for stochastic changes of gap height at oy = 0.375. The
distributions of dimensionless pressure at s; > 0 presented on the right-hand side of
figures 5 and 6 are obtained for an enlargement effect of gap height caused by
impulsive motion. If in this case the time after an impulse lenghtens, the gap height
decreases and pressure increases, and in a sufficiently long time after impulse the latter
tends to the time-independent pressure. The pressure distributions presented for 5, < 0
on the left-hand side in figures 5 and 6 are obtained for the limited effects of gap
height caused by impulsive motion. If in this case the time after the impulse is
lenghtened, the gap increases and the pressure decreases, and in a sufficiently long
time after impulse the latter tends to the time-independent pressure. Figure 7 presents
the dimensional value of capacity versus the dimensional time ranging from the
beginning of the impulse to 100 seconds after the impulse.

8. Conclusions

o [f the trauma is responsible for an increase in the gap height (s; > 0) of a normal
joint, then in the time just after impulse the gap height decreases and the pressure
increases. In a sufficiently long time after impulse, the gap-height and the pressure
attain time-independent values.

If the trauma is responsible for a decrease in the gap height (s; < 0), then in the
time after impulse the gap height increases and the pressure decreases. In a sufficiently
long time after impulse, the gap height and the pressure attain time-independent
values.

o If the time after the impulse occurrence is long enough, i.e. t;, > o, and if we
take the optimal standard deviations of gap height, then the pressure distributions
tend to the identical pressure distributions for the increasing (s; > 0) and decreasing
(s1 < 0) effects of the gap height changes caused by the impulse. This limit pressure
distribution can also be obtained based on the classical Reynolds equation (67) for
o1 = 0.

¢ From the numerical calculations we conclude that the pressure and capacity of
the joint obtained at the optimal standard deviation oy = 0.375 by virtue of the
measurements of normal cartilage surfaces of the human hip joint decrease by about
30% in comparison with the pressure and capacity obtained for smooth cartilage
surface without asperities and random effects.
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e The numerical calculations show that the biggest changes of pressure distribution
and capacity in human joint occur within the time interval from 0.1 to 10 seconds after
impulse.
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Appendix 1

The probability density functions (12) have the forms:

3(, &8 35 (82
5)= T 1*72 fOr*C”S5lS+C”, = 1_7; for_C3IS51S+C3]7
f1(6) =1 4¢ i f3(61) =132¢;, €31
0 f0r‘51‘>c11, 0 for‘é’l‘>c31,
693 ( &2Y 6435 (52
B lf—é for —cg; <6, <+¢s, B 1——; for —c;, <6, <+cq,
FACHERE] VI e J7(6)=7409%c;, (¢
0 for |8, > ¢y, 0 for|&,|> ¢;,,
52 k Ck1 52 k -
1- - 1-—-| d¢§ for —c,, <8, < +c
£(8,) = 2 2 1 Kl 1 kl>
JilOo) = k1 “en 3 (A1.1)
0 for ‘51‘> Cr1-

The function of the order & presented in (Al.1) for k=1, 3, 5, ... can be given in the form:

1

k(, Y[tk 7
16 = \/;{l—c;] {cklj\/;(l—y,)kdyl} for —c;; <6, <4c;y, 1<y, <+,
k\Y1/) = k1 he}

0 for ‘51‘ >cp-

(A1.2)

From equations (13), (16), (17) it follows [14]:

-1

k(¢ [k ,
ey =my, E\/;(J.\/;(l—yl)l‘dle for — ¢, <8, <+cpy, —1< y, S+, (A1.3)
|

1 1 1 ©
fim1 | \/E(l—yl)" dy, (=] { lim \/Ea—yl)k dv, = [ D)y, = [D6)ds =1 (A1.4)
k—o ) T k—o T e e

-1

where:
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and D denotes the Dirac function.
We insert (A1.3) into (A1.2), hence if k tends to infinity, we obtain:

52 )
S (1) = lim (1—;] . (AL.5)

—0 Ck]

A new variable K = ¢;/; tends to infinity, if & tends to infinity. Hence by using the result (A1.3), we
arrive at the limit (A1.5) in the following form:

&2

1 K? "Azl 1 L s
reor-| i) [ (2] e 16

By using a new variable x|, the cumulative function in infinity obtains the form:

+o0 +o0 +00
[1.6)ds, = [e a5, = ﬁ [eiax, =1 for x =6+ (A1.7)

— 0

Appendix 2

e The first proof. If k£ tends to infinity, then by virtue of limit (A1.6) and formulae (19)—(21) the
boundary value of standard deviation has the form:

o, = / [sre ds,. (A2.1)

T 2 -5t _ . 51 1 N —ns _ 1 T -8}
jale dal_—(z lim +%J;e ds, _ELE ds,. (A2.2)

1
27\ 5 o™

Its integration by parts gives:

—o0

Using the new variable x; in integrals (A2.2), we obtain:

©

2 -ns? _ L K -8t _ LL I -} — L
Ial e ds, = J: ds, = J;e dy = (A2.3)

m \x

By using expression (A2.3), the boundary value of standard deviation (A2.1) has the form:

o, = —04418 .. (A2.4)

ool \/ﬂ

e The second proof. We insert the result (16) into (22), and (22) into (19). Hence we obtain the
standard deviation in the following form:
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+1
[yra-yiyay
Oy =¢y |F— for k=1,3,57,.. (A2.5)

+1
Ja=d)ay

-1

After simple mapping we have:

k+1 N
j (),

O =Ch —1/ for £=1,3,57,.. (A2.6)
\/7(1 v dy,

By virtue of (A1.3), (A1.4) we can write the formula (A2.6) in the following form:

_kh_lllo\fv k+

The limit (A2.7) is obtained after the Hospital rule application.

for k=1,3,5,7,.. (A2.7)

Appendix 3

The general solutions of ordinary differential equations (36) for i = ¢, $have the form:

vior(x) = Cavol() + Co+vigz (1) for i=¢, 9, (A3.1)

where C;, Cj, are integral constants. The particular solutions of homogeneous and nonhomogeneous
differential equations are as follows:

va(0) = e dy, vp(n)=1, (A3.2)

O C—

1 0 o (I
2 ety Gz —va (0] e dz, | (A33)
0 0

i

where 0 < 7 < y=rN. If t; > 0, then N — oo, thus y — . If {{ > o, then N—0. Hence for r; > 0 we
have y — 0. For #;> 0 and r; = 0 we have y = 0. The following limits are true:

vou(x) =112 for y—> 0, 11— 0, N—; vy(y)=0, for y >0, r1=0, 0<t;,<t,<o0, N>0;
vis(x) =0 for y >0, =0, 0<f,<f,<oo, N>0, i=¢, &

voi(x)=0 fory—>0, >0, t{,—> 0, N>O0; (A3.4)

2
4! Pio

2sing, Op

Vo3 (X)=— for y—>0,/,>0,t, >0, N —>0;
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(A3.5)
r12 P
Ve () =—L=2 for y—>0,1,>0,¢ >0, N—>0.
2 99
The spherical bone head moves in circumferential direction ¢ only. Hence the synovial fluid velocity
components on the surface of bone head in circumferential direction are equal to the peripheral velocity
of spherical surface of bone head. The synovial fluid velocity component on a spherical bone head
surface in a meridional direction ¢ equals zero, because spherical bone head is motionless in the direction
. Viscous synovial fluid flows around the bone head. Hence on its surface the synovial fluid velocity
component in the gap-height direction equals zero.
Therefore we have the following boundary conditions:

Veos(X = 0)=sind;, vgos(x=0)=0, v x(x=0)=0

(A3.6)
forr =0 y=0 and 0<#f<f<w, N>0.

The spherical acetabulum surface is motionless in circumferential and meridional directions. But
spherical acetabulum has any vibrations in the gap-height direction. Hence the gap height changes with time.
Thus synovial fluid velocity components on the acetabulum surface are equal to zero in circumferential and
meridional directions. The synovial fluid velocity component in gap-height direction 7 is equal to the first
derivative of the gap height with respect to the time. Hence we have the following boundary conditions:

Voos(x=M)=0, voos(x=M)=0, v.os(yx=M)=Stroe /0t y;

(A3.7)
ry— €1<:>Z—>N€T1 =M and O<t1<t2<®, N>0,
where: 7= g€ r— the gap height, £, — the dimensionless total gap height, Str = 1/wt,.
Imposing conditions (A3.7), (A3.6) on the general solution (A3.3) we obtain:
Coivoil(x =0)+ Cprtvpo3(y =0)=sing, forr =0,
Covor(x=M)+Cpatvyp3(y=M)=0 forr=egp, (A3.8)

Co1voi(x=0)+Cgr+vgo3(x=0)=0 forr=0,
Covoi(x=M)+Cgr+vgos(y=M)=0 forr=er.

Taking into account limits (A3.4), (A3.5), the system of equations (A3.8) has the following
solutions:

sing, +v_, (M Vgos (M
o :—‘7‘/"”(), Cy :—M, C,, =sing, Cy=0. (A3.9)
Vor (M) Voi
Appendix 4

We calculate the following limits:

. Nexp(—N’g? exp(-N%e2,,)— 2N}, exp(—N’s} 1
lim W (5T1:N)E lim — p( 71s) = lim p( 71s) Tzl.vz p( 715) _ . (Ad.1)
N0 Noo s N0 & exp(=N"¢&7,,) Erpg

Ie 4l le

0
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aZW e N * * *
lim ((Tl)] =—limW (&r,N)+2lim [NZngs +W (5T1sN)]W (er NI (71,N)
N—0 5,20 N—0 N—0

o8}
_ +z(o+ ! Jl fns _, (A4.2)
Eris Erig )€y 2
ow (e, N * 1 & 1
tim | ZPEnN N i (o, V) tim W (e Ny =1 - e = L (A4.3)
N50 09, 520 N>0 N0 &y 2 2
erigN
oYle N 2N a2 F e
2 lim \/;2 M =hm2£2 e Neery J.e)n dll
N>02N 00, o No0 2N Jn 0
erigN ;
=-21im [— ZN‘C"%IS J.ell-dll + ngsJ =-2¢p,, (A4.4)
N0 0
Jr (*Y(en,N) v, T
A =-1+21im Ney e " Fdy, =-1,
vt aop ), , "R lmNene " [an (a45)
hence
2 2 2 2 2
o1 .. Jn (@ J(enN) O, Eris 1 & O
— =—1|- x0=2&p, x=+ X (=)= (=&p,) | =—— &y
21 }Vlg}) 2N2( 062 L. 2 2 ns X5 T, (=D = (=€) 4 s (A4.6)
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