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A mechanical and clinical evaluation
of the Helix Wire
for subcapital humerus fracture ostheosynthesis
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The aim of this paper is to investigate the mechanical properties the Helix Wire, a device that has
been employed for subcapital humerus fracture ostheosynthesis in recent years. There are several
potential clinical advantages associated with its use, but clinical results reported in literature are
controversial.

The Helix Wire has been assimilated into a helical spring, and several analytical solutions for
displacements and stresses have been compared and experimentally validated, showing the importance of
the pitch angle contribution.

Based on the results, the main factor for the clinical indication of this fixation device was found to be
the patient age. In fact, the use of the Helix Wire should be avoided in case of young patients or of
patients with well-developed muscular masses, where the forces may easily lead to critical stresses in the
spring and separation of the fracture surfaces. The clinical results obtained in the tests on 30 elderly
patients confirmed these findings.
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1. Introduction

Helical implants and helical intramedullary implants for bone fixation are more
and more used in clinical practice. In fact, the geometrical properties of the helix lead
to interesting considerations when the design of implants is addressed. While the
spiral is a flat curve, the helix is a three-dimensional curve lying on a cylinder or cone,
so that its angle to a plane perpendicular to the axis is constant [1]. It is characterized
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by its axis, radius and pitch. Special types of helix include the straight line (radius = 0
or pitch = infinity) and the circle (pitch = 0).

The 3D solids obtained by extrusion over a helical path have a property that is
particularly interesting with regard to the design of implants: the ‘“sword—sheath”
situation. Thinking of the implant as of a sword that must be inserted into a tightly fitting
sheath — the bone — we can easily recognize that there are three shapes of sword that are
suitable for this purpose: the straight, the circle and the helical swords. As already
mentioned, the first two geometries can be regarded as special types of the third.

The property holds also the other way round: if a 3D solid meets the criteria for the
“sword—sheath” situation, then it is an extrusion over a helical path. Based on the
previous considerations, and with the goal of minimizing the tissue damage while
facilitating the insertion and removal of the implant, novel possibilities for fixators
and nails based on a helical geometry have been examined in [2].

The Helix Wire [3], a device that has been employed for subcapital humerus
fracture ostheosynthesis in recent years, is also based on a helical geometry. The
aim of this paper is to investigate its mechanical properties and the consequent
clinical indications.

Fig. 1. The Helix Wire

Fig. 2. The small insertion incision

The Helix Wire is produced by Implantat Technologie Systeme GmbH (Graz,
Austria) and consists of a titanium helical spring with a round cross section, as shown
in figure 1. The device is inserted into the intramedullary canal through a small lateral
incision (figure 2). It is then rotated up into the head fragment until it bridges the
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fracture. The fixation of the fracture is obtained in three points: the lateral cortical, the
median cortical and the trabecular part of the humerus head (figure 3). The fixation
achieved with the Helix Wire is semi-rigid and is able to generate the micro-
displacements at the fracture surface that are known to facilitate the healing (figure 4).

Fig. 3. The three-point fixation
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Fig. 4. The healed fracture

Developed at first for functional fractures in osteoporotic bone, the Helix Wire is
applied in subcapital humerus fractures (displaced or not) that do not irradiate to the
head, since in this case the third fixation point would miss.

There are several potential clinical advantages associated with the use of the Helix
Wire:

e Minimally invasive surgery procedure.

e Minimal stress for the patient.

¢ Immediate pain remission.

® Quick fracture healing.

e Removal of the implant is not necessary.

o No migration, always possible with the Kirschner threads.

Nevertheless, clinical results reported in literature are controversial [4—10].
Consequently, a study has been carried out in order to obtain precise indications for
the use of this ostheosynthesis device and to avoid undesired outcomes.

2. Materials and methods

The Helix Wire is manufactured from Ti-6Al-4V ELI titanium alloy. The unique
properties of this alloy combine biocompatibility with attractive mechanical
properties, inherent workability and commercial availability that lead to its reliable
and economic usage. Moreover, its high strength efficiency (strength to density ratio)
has been suggested to play a role in patient perception of the efficacy of the implant
[11]. The physical and mechanical properties of Ti-6Al-4V ELI are shown in table 1
[12]. From the mechanical point of view, the Helix Wire can be regarded as a tension
helical spring of round cross section, characterized by a particularly large pitch angle.
Dimensions of the sample available for the study are shown in table 2.

Table 1
Ultimate tensile strength R, 1000 MPa
Yield strength, 0.2% offset R, 900 MPa
Modulus of elasticity, tension E 114000 MPa
Modulus of elasticity, torsion G 42200 MPa
Poisson’s ratio v 0.33
Table 2
Cross section radius r 1 mm
Mean coil radius R 4 mm
Spring pitch )4 12 mm
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Spring length L 150 mm

Number of coils in spring n 13

Displacements. There are several formulas representing the displacements.

(a) The books on the strength of materials often neglect the pitch angle and
evaluate the displacement of the spring end simply considering the spring as a round
straight bar subject to torsion [13, 14]. When the load P is applied, the spring
elongation f'of an n coil spring with this hypothesis is given by

4PR?
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(b) A common design formula by WAHL [15], based on an elementary
consideration of pitch, gives the spring deflection f, by applying a correction
coefficient v, to the expression (1):
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(c) ANCKER and GOODIER in [16] derived a more accurate expression for spring
deflection by a thin-slice method: the unloaded spring may be considered as a number
of identical thin slices all glued together. The method is applicable when the cross
section and applied loads are the same throughout the body. After loading, the final
position of a typical cross section will be specified by a rigid motion of the slice
(which is different for the different cross sections) plus a warping and distortion of the
slice (which is the same for all of them). Displacements were deduced from
considerations of symmetry and expressed as a doubly infinite power series in the
parameters (r/R) and y (pitch angle, tan y = p/2nR) inserted into the equations of the
boundary-value problem. Details of the solution may be found in [17]. The resulting
expression for spring deflection fj,, is
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where again formula (1) is modified by a correction coefficient y4).

Stresses. The greatest stresses are at the inner point on a horizontal diameter of the
cross section. The usual notation for a cylindrical system of coordinates is used.

(a) The simplest formula assumes only the torsional shear on a round straight bar
plus an uniform distribution of direct shear:
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(b) WAHL [15] considered the torsional shear on a curved bar plus the bending
shear on the neutral axis of a round cantilever beam as in the theory of elasticity:

_2PR(4c—1+0.615)’ 5)
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where ¢ = R/r.
(c) The complete solution, obtained by ANCKER and GOODIER [16] from the above
displacements, is
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Experimental test. In order to assess the accuracy of the solutions available in
literature, the characteristic curve of the Helix Wire has been experimentally
determined. The applied load was increased in successive steps, and the elongation of
the spring was measured with a capacitive sensor. The loading system had the effect of
reducing the number of active coils to 11.5. The Helix Wire exhibited a linear
characteristic up to a 130 N load. The experimental elastic constant for the spring with
11.5 active coils was 11.35 N/mm.

3. Results

The results obtained in the experimental test on the 11.5-coil spring were used to
validate the analytical models. From these data, it was successively possible to
compute the elastic properties of the single coil and of the complete 13-coil Helix
Wire.

In figure 5, the experimental curve is compared with the analytical results. It can
be seen that while the correction introduced by the Wahl coefficient is not sufficient,
the expression by Ancker and Goodier shows a very good agreement with the
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experimental data. This model has been therefore employed to evaluate the elastic
constant of the complete 13-coil Helix Wire, K = 10 N/mm.
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Fig. 5. Experimental and analytical results

The characteristic curve of the single coil is shown in figure 6. In order to quantify
the microdisplacements at the fracture surface, the application of a 50 N load, that is
approximately the weight of an average human arm, leads to 380 um elongation of
a single-coil. Dynamic microdisplacements of this magnitude are known to promote
the healing process.
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Fig. 6. Characteristic curve of the single coil
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The non-null stresses computed with the Ancker and Goodier model are shown in
table 3. The von Mises stress has been then computed and compared with the yield
strength of the alloy, which leads to the definition of a critical value of load for the
Helix wire examined: P, = 130 N.

Table 3
7o Oy [
348 P -0.07 P 331P

When the arm is moved, the inertial loads are more than double its weight and
the total load acting on the implant can therefore easily approach the critical value.
Especially in case of young patients or of patients with well-developed muscular
masses, the forces involved may easily lead to critical stresses in the spring and to
the separation of the fracture surfaces due to the permanent elongation of the spring.
Consequently, patient age appeared to be a critical factor in the clinical indication of
this fixation device.

4. Clinical test

Between January and September 2003, a total of 30 patients (7 males and 23
females ranging in age from 74 to 93 years) with fracture of the humeral neck were
treated by the insertion of a Helix Wire implant. The fracture involved the right side in
18 cases and the left in 12. Of the 30 patients, 9 had nondisplaced or minimally
displaced fractures, and the other 13 showed fracture lines radiating to the humeral
head but without fragmentation of the head. The time interval between injury and
surgery never exceeded three days.

The surgical procedure was carried out with the patient in a half-seated position
(beach-chair position) and the use of an image intensifier. The fractures were reduced
and synthetised with the Helix Wire. The implant was positioned 2—-3 mm below the
cortical bone of the humeral head. The distal end of the Helix Wire was then shortened
so as to leave a 10-15 mm segment in extracortical position. After post-operative
radiography, the planes were sutured and a sling applied for 30 days. The patients, albeit
with their arms in a sling, immediately started physiotherapy that included both active
and passive movements. Serial radiographic follow-up examinations were performed
at the 30th and 60th days.

The clinical and functional assessment of the patients treated with the Helix Wire
was carried out using the CONSTANT and MURLEY score [18], a 100-point scoring
system based on 35% of subjective parameters (pain, daily activities) and 65% of
objective parameters (range of active motion and strength). This system is a standard
for all conditions and surgical procedures, as functional assessment with this system is
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evaluated independently of diagnosis and treatment. Patients reporting no pain after
physiotherapy were assigned a score of 15, if they had mild pain they were assigned
10, moderate pain 5 and severe pain 0. Furthermore, if the patients were able to
perform all the activities of daily living they received a score of 20, if not, the score
was reduced according to the activities they were able to carry out. Range of motion
was assigned a score of 40, 10 for elevation of the arm, 10 for abduction, 10 for
intrarotation and 10 for extrarotation. Strength was given a score of 25 if the patient
was able to maintain a 90° abduction.

The clinical and functional assessment yielded the following results: excellent in
44 cases, good in 17 cases (score ranging from 75% to 98%), fair and sufficient in
8 cases and poor in 1 case due to implant migration. Compared to the results obtained
with other non-invasive or surgical techniques, these findings appear to demonstrate
the value of the technique used. In all of the cases considered excellent, good, fair and
sufficient, the fractures healed; there was no infection, pseudoarthrosis or vascular
osteonecrosis.

5. Conclusions

The mechanical properties the Helix Wire, a device employed for subcapital
humerus fracture ostheosynthesis, have been investigated in order to obtain precise
clinical indications for its implant. The Helix Wire has been assimilated into a helical
spring, and several analytical solutions for displacements and stresses have been
compared and experimentally validated, showing that the use of Helix Wire should be
avoided in case of young patients or of patients with well-developed muscular masses,
where the forces may easily lead to critical stresses in the spring and the consequent
separation of the fracture surfaces.

On the basis of the clinical results obtained in 30 elderly patients, the Helix Wire
proved to be highly effective, provided that the following main indications are strictly
observed: humeral neck nondisplaced fractures and displaced fractures without
involvement of the humeral head (the third fixation site); elderly patients in whom the
extent of the forces bearing on the fracture points are unlikely to interfere with the
implant mechanical characteristics.
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