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Numerical contribution to the viscoelastic magnetic
lubrication of human joint in periodic motion
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This paper presents the author’s numerical contribution to unsymmetrical viscoelastic hydrodynamic
lubrication of human joints with synovial fluid in periodically changed time and unsteady magnetic field.
We assume that bone head in human joint moves in two directions, namely in circumference and
meridian directions. Basic equations describing the flow of synovial fluid in human hip joint are solved
analytically and numerically. Numerical calculations are performed in Mathcad 2000 Professional
Program, taking into account the method of finite differences. This method satisfies stability of numerical
solutions of partial differential equations and values of capacity forces occurring in human joints.
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1. Preliminaries

There is a number of current studies whose authors have different approaches to
the study of joint biomechanics. Lubrication of human joint under unsteady periodic
conditions and for real viscoelastic properties of synovial fluid has not been examined
hitherto. Viscoelastic lubrication of human joint in unsteady, periodic motion and
magnetic field was not considered in the papers [1], [4]-[7], [11]-[19]. In the present
study, the changes that occur during the viscoelastic lubrication of human joints under
varying periodic, unsteady conditions are examined.

In the paper, we assume rotational motion of the human bone, periodic and
unsteady flow of viscoelastic synovial fluid, periodic time-dependent gap height,
changeable synovial fluid viscosity, variable geometry of gap height, constant density
po of synovial fluid, and isothermal, incompressible flow of synovial fluid. We also
assume that bone head can make rotational motion in two directions at two various
angular velocities (see figure 1). In the case of unsymmetrical flow of synovial fluid,
three components vy, v,, v of its velocity vector depend on the variables a1, a,, a3,
while the time ¢ and the pressure function p depend on &3, &3, ¢. The gap height £ may be



62 K. CH. WIERZCHOLSKI

a function of the variables «, a3 and the time z. The symbol &, denotes the co-ordinate
in circumference direction, &, is the co-ordinate in gap height direction, a3 stands for
a generating line of rotational bone surface or co-ordinate in longitudinal direction.

2. Basic equations

The problem of lubrication of human hip joint will be presented by means of the
conservation of momentum, continuity and Maxwell’s equations [2], [10]:

DivS + uo(NVYH = pdv/dt, divwv=0, V*H = ucd*H/07, (1)

where: S — the stress tensor, v — synovial fluid velocity (m/s), H — the magnetic intensity
vector (A/m) with the components (H,, H>, H;), N — the magnetization vector (A/m) with
the components (N;, N, Ns), 1o — the magnetic permeability coefficient of free space
(mkgs *A ), & — electric permeability coefficient of synovial fluid (s*A’m~kg™). We
assume that synovial fluid is a good insulator, i.e. the electric conductivity coefficient o=
0. Moreover, the second-order approximation of the general constitutive equation given
by Rivlin and Ericksen can be written in the following form [10]:

S=-pl+ 7oA+ a(A))’+BA;, A=L+L/

A,=grada+ (grada)’ +2L'L, a=Lv +%, 2)
where: p — pressure, I — the unit tensor, A, and A, — the first two Rivlin—Ericksen
tensors, L — the tensor of gradient fluid velocity vector (s'), L' — the tensor of
transpose of a matrix of gradient vector of a biological fluid (s "), ¢ — the time (s), a —
the acceleration vector (rn/sz). The symbols: 7, &, [ stand for three material constants
of synovial fluid, where 75, denotes dynamic viscosity (Pas), the symbol £ determines
the pseudoviscosity coefficient (Pas?) and describes the friction forces between
viscoelastic particles of synovial fluid. The acceleration terms have been neglected.
Only time derivatives of velocity component have been retained. The tangential and
vertical acceleration of joint surface, variable in time, is taken into account. We also
neglect Re¥Wand ¥ =&/R~107, and the centrifugal forces, where R is the radius of
curvature of bone surface. We assume that the components of magnetic intensity
vector and the components of magnetisation vector are constant in the height
directions of joint gap. We require curvilinear, orthogonal system of co-ordinates ¢,
o, a3 with the Lamé coefficients hy, h,, h;, respectively. From the boundary
conditions of thin layer it follows that 4, = 1. After boundary simplifications the
system of conservation of momentum, continuity and Maxwell’s equations has the
form of the system (3)—(10). Equations of motion are as follows [9], [10]:

v, 1 6p 0 v, v, N, 0H, N, 0H,
Po—=, == + 0 + T T Ho Tt Ho—
ot h, P, Oa, oa, otoa h, doa, hy Oa,

2

(3
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0= 4
e,
ov 1 & o Ov o’y N, 0H N. oH
Py == Py ny—=— |+ 8 32+/10_1 S ptg———, (5)
ot hy day  da, oa, otoa, h, oa, hy Oaj
ov ov 2
b, “2 < (hv.)=0. 6
s 50[3(13) 6)

Terms multiplied by the factor £ describe the influence of viscoelastic properties of
synovial fluid on the lubrication process. If the coefficient £ tends to zero, then set of
equations (1)—(6) tends to the equations describing the lubrication of human joints
presented in papers [12]-[19]. Maxwell’s equations are as follows [2]:

V?H = grad(divH) — rot(rotH) = 10z 0*H/0¢, (7)
hence:
e 1[dng) ag)] e
X(é:a §2,§3)_h1 aal h3|: 80[2 8053 Hog 812 > (8)
_oe 1 Jolng) elmg)] e,
Y(§:§1a§3)—a ] h1h3|: oa, oar, =Hor PR )
_1oe 1fae) ok )] otm,
Z(f:glaé/z)—m oo, I |: da, oa, =Hoe o (10)
where:
é’=i 6(H3h3) a(Hz) _ 1 6(H1h1)_8(H3h3)
"hy| da, bay |77 hhy| oo ooy |
1 [a(u,) ol
43_;11{ oa, oa, | (1

We denote: po.= o€ 0 < a1 <2mcy, 0 <1< 1, b, =7R/I8 < a3 < TR/2 = by,
0 < @, < ¢ H; are the components of magnetic intensity vector H (A/m), &= divH, B;
= uo(H;+ N;) are the components of magnetic induction vector B in 7, N;= yH, are the
components of magnetisation vector N (A/m), y is dimensionless magnetic
susceptibility of synovial fluid. In order to derive the solutions of the above set of
equations, an oscillating periodic motions will be discussed.
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3. The method of integration

For the velocity components and the pressure, without loss the generality, the
following approach has been introduced [8], [9]:

v =" (@), 05, 05) + zvi(k)(alaa27a3)exp(ikw0t)a i=1,2,3, (12)
=1
p= p(o) (ay,a5) + Zp(k) (o), a5)explikogyt) , (13)
k=1
Sl . .
H, =1, 0)+ 3~ H (e explikon), =13, (14)

k=1
where: @, is an angular velocity (s) describing periodic perturbations in unsteady flow

of synovial fluid and magnetic field in joint gap and i =+/—1 is an imaginary unit.
Gap height has the following form:

0=V +8="(a,, a;) + z e, ay) expliko,t), (15)
k=1

g

where: £ denotes time-dependent perturbation of the gap height caused by unsteady
work conditions, £ — time-independent coefficient of perturbations of gap height, &
— time-independent primary gap height, and &, — the total value of the gap height.
Because of linear form of equations (3)—(7) a separation of a steady flow from an
unsteady flow of synovial fluid is possible. We insert series (12)—(14) into the set of
equations (3)—(7) and we equate terms of the same upper indexes in brackets and the
same powers of exp functions. Equations of motion for steady conditions in steady
magnetic field and Newtonian fluid have the form [9]:

(0) (0)
0=- L Ty T O H), (16)
h, oa, OJa, e,
(0)
0= (17)
oa,
(0) o (0)
0=- L0 Oy OB O ), (18)
hy oo, oo, o,
P (0) P (0)
O 2 (@)=, (19)
o da, ooy

for0<a;=p<2nc,0<c1<1,b,=nRBL az=3<nR2=b,0< ar=r<e.
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The system of equations (16)—(19) determines an unknown pressure function p©
and the unknown components v”, v\, v{”’ of oil velocity vector in the directions ),

as, as, respectively.
Maxwell’s equations for steady conditions have the form [2]:
x[g0.e0 c®)=0, ¥e, 0 c0)=0, Z[e",. 0. c0)=0, (0

at0< < 2nc;, 0<c1<1,b,=nR8 < az;<tR2 =b,, 0 < a; < & The system of
equations (20) determines the unknown components H 1(0) , H 50) , H 3(0) of magnetic

intensity vector in the directions «1, a», a3, respectively. Equations of motion of the k&
steps of correction values for the unsteady periodic motion and conditions have the form

(81, [9]:

1 ap(k) ﬁ é’v(k) 1 k k
ik, oy = —— + L+ — M HDY), 21
0PoV1 h, oa, | da, Mk ‘a, Sk ( ) (21)
(k)
0=2 L (22)
a,
1 ap(k) o ﬁv(k) 1 . .
ikw, pvF) =—— + 3+ —MPHD)Y, 23
0PoV3 h, oa, = da, ur e, ks ( ) (23)
d (k) ) (k)
hy C0 pn L2 +i(hlv§k))=() (24)
| do, oo

fork=1,2,3,..0<a1<2nc;,0<c1<1,b,=nRIBL a3<ntR2=b,, 0 < < &
The symbol:

= mnot+ikwof (25)

denotes an apparent viscosity (Pas). This viscosity depends on the velocity
deformations caused by the viscoelastic properties (see the coefficient £) and by the
angular velocity @, describing periodic perturbations. This fact indicates that synovial
fluid has non-Newtonian properties. If the coefficient S tends to zero, then
viscoelastic and non-Newtonian fluid properties are neglected.

The system of equations (21)—(24) determines the unknown corrections p* of

pressure function and the unknown corrections vl(k) , vgk) , vgk) of the components of oil

velocity vector in the directions «, «,, a3, respectively. The Maxwell equations for
the & steps of corrections caused by unsteady conditions have the form [2]:

K~k ~k)\_ 7.2 .2 k K ) ~k)\_ 7.2..2 k
X(f( )a 2(), 3())=k a’oﬂOEHl( >, Y(g( ), 1( ), 3())=k wOIUOEHé )a

Z(E®.60,69 )= Ko g 1Y (26)
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fork=1,2,3,...0<a,<2nc;,0<c1<1,b,=nR8<L a3<nR2=b,0< ar< €.
The system of equations (26) determines the unknown corrections H l(k), H ék), H 3(" )

of the components of magnetic intensity vector in the directions a;, @, s,
respectively. Before calculations we must insert the following expressions [2] into
equations (20) and (26):

£ =(div)® = ﬁ{a%(hﬁf“ﬁ ai : (h1h3H§k))+a%53(hl H;k))}, on
o _ 1 [olmns) eln®)] 1 [olinn) olen)
| :Z oa, ) oay | | O oa, ’

(k)Eila(Hgb) 5(H1(")h1)]

S Th| da,  oa,

fork=0,1,2,3, .. 05 a=9p<2nc,,0<c1<1,b,=nR/8 < a3= < R/2 = b,,
0La,=r<e

The functions M 1(0) M 3(0) in equations (16)—(18) and functions M l(k )M 3(1‘ ) for k=
1,2, 3, ... in equations (21)—~(23) have the following forms:

k {Hl(kn) aH[(n) N H}(kfn) aHi(n)]

MOHDY = 1Y ! ! (28)
1 1 3 3

n=0
fori=1,3,k=0,1,2,3,...0<a1=¢p<2nc,0<c1<1,b,=nRI8L a3=9 < R/2
=b, 0 ar,=r<e.
The functions H\”, H”, H{” obtained from equations (20) and the functions
Hl(k),Hék),Hék) for k =1, 2, 3, ... obtained from equations (26) are inserted into

expression (28). Such functions are inserted into equations (16), (18), (21), (23).
Afterwards the system of equations (16)—(19) and system of equations (21)—(24) are

solved in order to determine the unknown functions p(o), vl(o), v§°>, vgo), p(k),

v, v, ng) fork=1,2,3, ..

4. Boundary conditions

Bone head develops the angular velocities @, and @; in the directions «; and a3,
respectively. Acetabulum moves in circumferential &, and meridional «; directions.
The gap height changes in the time in vertical direction. Moreover, it is assumed that
tangential acceleration of bone head surface varies in time. Hence, for the system of
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equations (16)—(19) and (21)-(24) at i = 1, 3; £k = 1, 2, 3, ..., the boundary
conditions[8], [9], [20] are as follows:

0@ oy =0,05)=U(@), v (@, =0,05)=Us (@), (29)
vW(a,a,=0,a;)=0, (30)
v, 0, =6,0,)=0 for i=1,2,3, (31)
@, a,=0,a)=Uy(a), v (@, a=0a0)=Uy@), (32)
Vi (e, a, =0, ;) =0, (33)
v (a,a, =e,a,)=V, for i=1,3. (34)
We assume:

i Va,,a, =&, a;)expliko,t)= Pt i ik, explikem,t), (35)

k=1 k=1

hence

vgk)(al, o, =¢€,05)= g(k)ika)0 for k=1,2,3, .. (36)

Time-independent, average gap height with perturbation assumes the following
form:

t/l

© 1 (k) Ly
=R dt] = E kt)dt
e=Rele +[ J. t]= J.cos @, t)

m (O
2| sin (wgkt,, )
oy £ , 37
Z{ w,kt,, } 37

where ¢, is an average time period of the joint gap perturbations, ee — operator of
a real part of complex number. Velocities of bone and acetabulum surfaces are
periodically dependent on time. Total tangential velocities of bone surface and
acetabulum surface in the directions «; have the following forms [4], [5]:

Uy(a;,)=Uy, + Y Uy explikmyt)  (for bone) (38)

k=1

2 Vo
V.(t) = ZVik exp (ikw,t), V,; = k_ =const (for acetabulum),

k=1
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where Uy, are the time-independent coefficients of tangential velocity changes of bone
surface ati=1, 3, k=1, 2, 3, ..., and V' are the time-independent constant coefficients
of tangential velocity changes of acetabulumati=1,3,k=1,2,3, ...

5. Velocity of synovial fluid and pressure

5.1. Solutions for stationary flow

In the first step of solutions, we assume a stationary flow. Dynamic viscosity 7
can be a function of ¢; and o3 only. The system of equations (16)—(19) for boundary
conditions (29) and (31) at i = 1, 3 has the following solutions [8], [9]:

(0)

O = L LIPg a0 | 25— 5) 4 Uy (1-9), (39)
2n, h,\ Oa,
(0)

WO = —Li[a” - h3M§°)J e2s(1—5)+Us(1—5). (40)
2n, hy\ Oay

We integrate the continuity equation (19) with respect to the variable a,. Imposing
the boundary condition (30) on the velocity component in the gap height direction, we
obtain:

o

v __.[?ﬁ) a = I, _[ai(hl §0))da2 (41)

Imposing boundary condition (31) for i =2 on solution (41), we have:

(0)
javl — j h O )da, =0. (42)

We insert solutions (39) and (40) into (42). Hence, the pressure pl(o) for the steady
conditions and magnetic field is determined by the following modified Reynolds

equation:
1 0 ap hM(O) 1 0 hy ap M(O)
h 60{1 770 oq, h3 6a3 h3 770 oa,

oleh
—6U,, 2 6, - @
oa, hy Oay

(43)

b

wheres= /g, 0<r=m < ¢ b, < s = 9< b,
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5.2. Corrections for unsteady flow and viscoelastic properties

Imposing the boundary conditions (32), (34) on the system of equations (21)—(24)
we obtain the changes of components of synovial fluid velocities v, v; caused by
viscoelastic properties and unsteady motion in the following form:

sinh[(g -a, )Ak] Y sinh(cr, 4, )

® — 7 W, +U. : 44
K w et sinh(f;Ak) * sinh(gAk) ’ “44)
where:
7, =l - exples )1~ [~ explea ) as)
s1nh(8Ak)
. (k) .
, E;(ap——%hiMfk)} 4, = ikeypy (46)
ko poh; \ Oa; 2 un

fori=1,3 and k=1, 2, 3, ... Integrating continuity equation (24) with respect to the
variable «, for boundary condition (33) we obtain:

a,

ot 1
(k) _ _ 1 (k)
W= j 80{1 vy ! (h$)da, . (47)

Imposing the boundary condition (36) on the solution (47) we arrive at:

& A (k) &
javl daty + - [ Z {1t )dar, =~ ikao, e, 43)
a, hy 5 Oa

If we take into account the rule of differentiation of the integrals with variable
limits of integration and if we use additionally conditions (34), then equation (48)
assumes the following form:

8 r (k) 1 8 g (k) . (k) 6 hl 65
7jvl da2+h—a—%jh doty == ikes Oy + V4V (49)

a, 3 004

for k=1, 2, 3, ... If we insert solutions (44) for i = 1, 3 into equation (49), then after
final calculations in Appendix we obtain:

1 a ap(k) —ihM(k) 1 o | ap(k) —ih M(k)
h 6051 77k oa, 2k h3 oa, h3 nk oa, 2k

h
=12i kwyh,e® —12{Iflk§—‘9+ ngh—laa—g}
a, 3 005
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+6[U,, (a;)+ I/lk][ O —ii[“’i]ikwo po:l

oa, 1200\ 1,
1o@h) 1 0 (&h),
+6[U +V, 1— L k 50
[Usi () 3k]h3[ oa, 12 8053( 7 1K@, Py (50)

fork=1,2,3,..0<a1<2nc;,0<c1<1,b,=ntRIBL a3<nR2=b,, 0 < a,< &.

Multiplying both sides of equation (50) by expression exp (ikw,t) and equating
terms of real parts of complex number on both sides of equation, we obtain the
following sequence of the modified Reynolds equations:

3 (k) 3 (k)
10 ‘9_ op —h—]iMl(k) +ii ﬂg—* op —h—,ng") =12 kayh,e“sin(keo,t)
h oa,| n,\ Oa, 2 hy Oas | hym, \ Oa; 2

d 1 0 ’ :
+ 6[U1k (@3)+ Vlk]|:£cos (ka)ot)+5 £y (’72 +6‘a)727?€2ﬁ2 Jka’opo sm(ka)ot):|
1 1\ 7Ty T @

3
+ 6[U3k (al ) +V, ]hi {M cos(ka)ot) + i i (Lohl]ka)opo sin(ka)ot)}

;| Oay 12 Oa, 775+a)§k2,b’2
oe h, O¢
—12{Vlka—al+ I@kh—:a—ajcos(kwot) (51)
fork=1,2,3,...0<a,<2nc;,0<c<1,b,=nR/8< $<nR2=b,, 0<r<¢gand
ikw,t k .
1 e xpliken) I cos(k)+—— L sin(koy). (52
I un M +ook™p M + ok

Formula (52) shows that total apparent viscosity 77; of synovial fluid depends

additionally on the time ¢. This fact can be explained only by virtue of rheological
properties of synovial fluid. The modified Reynolds equation (51) determines the
following pressure functions: p", p®, ..., p®. These functions define pressure
corrections caused by the unsteady and viscoelastic properties of the synovial fluid in

magnetic field.
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6. Particular cases of human joints
In a particular case of hip joint with spherical bone head, we have spherical
coordinates and the Lamé coefficients in the following form:
o=@, a=r, ay=394, h=Rsin(9/R), h;=1. (53)

The time-independent coefficients of circumferential velocities of spherical bone
head can be expressed as (see figure 1):

U,y =@ ,h, = o,Rsin($/R), Uy, = wsRsin(p), U, =, Rsin($/R), Uy, = oy, Rsing,

V. Steady unsteady

N E
N

timet Bone head
> unsteady

—

Velocity

AE unsteady

(0) e < N N
€ ~—— S~— ~~_7

time t

=

p steady Unsteady

S

o~ time t

-

pressure gap height

=
-1
=

<)
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Fig. 1. Rotational periodic unsteady motion of bone head and acetabulum in two directions:
a, b — hip joint, ¢ — bone head and acetabulum for arbitrary human joint in periodic motion, n — normal vector

20 @3
a)kE_, a)kE_, k:1,2,3,..., (54)
1 k2 3 k2
where @, @9 are angular velocities of spherical bone head and their perturbations in
circumferential direction (a; = @), and @3, w3 are angular velocities of spherical bone
head and their perturbations in meridional direction (a3 = ). Symbol R denotes in
this case the radius of spherical bone head.

acetabulum Vo= de

o3
=0 acetabulum
bone

%

V=d§
2 dt
A€
e | YE(D)

Fig. 2. Range of the region of lubrication on the spherical and hyperbolic bone heads

In hyperbolical coordinates (a1, @2, @3), for hyperbolic bone head in human joint
the following Lamé coefficients are valid:

h =asec’(o4), h,=1, hy=asec’ (a3/1)\/1 +4(an) tan’ (a3/1) (55)

with
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Azl }K, 0<a,<2n, 0<a,<eg, |a3|Slarcc051/ <.
b\a A a+w

We make the following notations: a is the smallest radius of the bone cross-
section, a; = @ + w is the largest radius of the bone cross-section, w=a, —a, 2b is the

joint length.

The region of lubrication 2(a;, «3;) (a bone head) of spherical hip joint in
spherical co-ordinates and the region of lubrication (¢, «;) (an acetabulum) of
hyperbolic hip joint in hyperbolic coordinates under unsteady conditions are shown
in figure 2.

7. Modified Reynolds equations in spherical co-ordinates

Let us present the modified Reynolds equation for unsteady motion in magnetic
field, but without viscoelastic properties of synovial fluid, i.e., for f= 0. We assume
that a centre of spherical bone head is at the point O(0,0,0) and centre of spherical
cartilage at the point O(x — Agy, y — A&, z + Ag). Eccentricity has the following
value: D = [(A&) + (A&) + (As)]™ (see figure 3). In spherical coordinates, we
assume thin boundary layer, thus for synovial fluid flow we obtain: o= @, 3= Jand
the Lamé coefficients (53). We also assume time-independent coefficients of gap
height perturbations in the form: £ = £/k%, hence by virtue of (37) an average gap
height is a sum of infinite series in the following form [3]:

e=e0 4 g“”Z%, e=Tpe®, Iy=1+0.08333 (21 — @ot) (T — @oty), (36)
k=1 a)Otm

where:
£%p, 9/R) = Agicosp sin(9/R) + Ae, sing sin($/R) — Ag; cos(F/R ) — R
+ {[Agicos @ sin(3/R) + Ae; sing sin($/R) — Aes cos(F/R)]*
+ R+ &min)(R + 2D + &in)} "7, (57)

isin(kx) _@Qn-x)(m-x) e 0 <on (58)
N 12 )
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, acetabulum z, acetabulum

gap height

unsteady

Fig. 3. Time-dependent changes of the gap height under boundary conditions

If left and right sides of equations (43) and (51) are added for k=1, 2, 3, ..., and
viscoelastic properties of synovial fluid are neglected, i.e. the coefficient £ tends to
zero, then we arrive at the modified Reynolds equation:

3 [ ©
1 3 i{g_ a_p_R(sinﬁjZ ile(k) COS(kG)Ot):|}
Rsin2 0@ |1y Op RJi= 2
R
3 0
_,_Ri & a_p_z ikMa(k)cos(ka)ot) sinﬁ
09 | n, _819 = 2 R

= 6a)1R[Sin ﬁj% + 60,R*(sin q))i[g sin ﬁj
R)op 09 R

.9 = sin(ka,t 5} . (8 ¢ |~ ka,t
-12 w,R (smEj g(O)ZM—12[VIO£+Rsm (—) Vw—‘ﬂzcos( oyt)

k=1 R 08 |45 K’
o0 3 0 .
+ 6{@10R(Sin ﬁj + Vw} EZMZQJM) + ii(g—]wopo Z sin(kay!)
R opi  k 12 0\ 1, = k
+6R[w5,R(sing)+ Vs, ]

0 . I \&coslkkot) 1 o6& . 9 Z sin(kaw,t) (59)
x{%(gsmﬁjz P 0 o aS(U_SIHE]QOPOZTO ,

k=1 k=1
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where M, = M,, Ms= Mgy and the sums of infinite series assume the following forms

[3]:

= smka) T—w,t
Z o) = O for 0<aw,t<2m,

k=1

2 = 2 T for 0<w,<2m.

i cos(ka)ot (TE - 6001)2 n’
=1
We have 0 < ¢ < m, TR/8 < 9 < nR/2 and the gap height has the form &= I} &,
whereas /o= 1 for wet, = 2mw, and /o= 1 + 0.12737 for wot,, = 1/6. The modified
Reynolds equation (59) determines the total pressure function p for unsteady
conditions in magnetic field.

8. Numerical calculations

The pressure distribution p© for stationary motion and its corrections p'”, p®, p*®, ..
for unsteady flow of synovial fluid with viscoelastic properties can be calculated from
equations (43), (51) in the lubrication region (2 indicated in figure 3. It is a section of
the bowl of the sphere. In this case, on the boundary of the region 2 the pressure p©
takes the value of atmospheric pressure p, and corrections of pressures p* for k=1, 2
are equal to zero. We use the time-depended viscosity (52).

Total pressure p for the unsteady flow of synovial fluid in hip joint gap without
viscoelastic properties we determined inside the region (2 from equation (59). On the
boundary of the region (2 the total pressure p assumes the values of atmospheric
pressure p,. Numerical calculations are performed for the region 2: 0 < ¢ <7, TR/ <
ay= 9< wR/2, where Iy=1 for wot,, = 2n, and = I £, R =0.0265 [m], @;=0.8 [s~
", @3=0.150 [s'], @o=0.02 [s'], @10=0.09 [s], @30= 0.01 [s], Ae; =1 [um], Ae, =
0.5 [um], Agz =3 [um], 70 = 0.20 [Pas], po = 800 [kg/m’]. Minimal value of the gap
height &pin = 3.0 [um], and maximal value of the gap height g, = 7.12 [um] and we
take into account the time period ¢ = 2m/w,. Numerical calculations of pressure
distributions varying with time are presented in figures 4, 5 and 6.

Figure 4 shows pressure distribution varying with time caused by rotation (w;= 0.15 s~
") of the bone head in the meridional direction (a3 = ) only for normal hip joint which
is not affected by magnetic field. We take into account the angular velocity perturbations
(w30=10.010 s’l) on the spherical head of the bone in meridional directions, i.e., @, = 0,
w10 = 0. Rotation about the bone head in circumferential direction is not taken into
account. We assume that acetabulum is motionless, i.e., Vy = 0. We also assume the
perturbations of the joint gap height in unsteady motion at angular velocity @, equal to
0.02 s'. For the time ¢ = 0, ¢ = T/, ¢ = 21/w,, ... we obtain the maximal values of
pressure, which are 1.067-10°Pa; 1.245-10°Pa; 1.067-10°Pa, ..., respectively.
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Figure 5 shows pressure distribution varying with time caused by rotation (@; = 0.8 s~
") of the bone head in the circumferential direction (¢ = @) for normal hip joint which is
not affected by magnetic field. We taken into account the angular velocity perturbations
(w10=0.09 s™") on the spherical head of the bone in circumferential directions. Rotation
about the bone head in meridional direction is not taken into account, i.e. w3 =0, w;3y= 0.
Acetabulum is motionless, i.e. V = 0. For the sake of a better comparison of numerical
results, we assume the perturbations of the same gap height at angular velocity @, =
0.02 s™'. For the times ¢ = 0, # = /@y, t = 27/ @y, ... we obtain the maximal values of
pressure, which are 1.186-10° Pa; 0.932-10° Pa; 1.186-10° Pa, ..., respectively.

Figure 6 shows pressure distribution varying with time caused by rotation (@, =
0.8 ') of the bone head in the circumferential direction (o = ¢) and simultaneously
by rotation (ws; = 0.15 s') of the bone head in meridional direction (a3 = ) for
normal hip joint being not affected by magnetic field. We take into account the
angular velocity perturbations (@1o= 0.09 s™') on the spherical head in circumferential
direction (& = ¢) and simultaneously velocity perturbations (s = 0.010 s™') on the
spherical head of the bone in meridional directions. We assume the same perturbations
of gap height in unsteady motion at angular velocity @,=0.02 s . For the times # = 0,
t =1/w,, t = 21/, ... we obtain maximal values of pressure equal to 2.077-10° Pa;
2.002-10°Pa; 2.077-10°Pa, ..., respectively.

R=0.0265 [m], 1=0.20 [Pas] t=0 [s] and t:()Z'n/cou [s]
©=0.0 [1/s], ®16=0.0 [1/s] Pmax=1.067-10" [Pa]
©3=0.15 [1/5], @30=0.01 [1/s] Ci0=859.6 [N]

0=0.02 [1/s] Lubrication surface =20.38

AD [Pa]

R=0.0265 [m], n=0.20 [Pas] t=1/®, [s]
©=0.0 [1/5], ®10=0.0 [1/s] Pmac=1.245-10° [Pa]
©3=0.15 [1/5], ©30=0.01 [1/s] Cio=1012 [N]

@0=0.02 [1/s] Lubrication surface =20.38 [cm®]
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AP [Pa]

2.0-10%-
pmax

1.5-10°

1.0-1

Fig. 4. Pressure distributions caused by rotation in a3 = ¢ direction only (@, = 0, @,o= 0), where
non-zero values of angular velocity @;= 0.15 s™', and non-zero angular velocity perturbations s,
in unsteady flow and non-zero angular velocity perturbations @,
of gap height perturbations are taken into account

R=0.0265 [m], n=0.20 [Pas] t=0 [s] and =27/, [s]

=0.8 [1/s], ©10=0.09 [1/s] Pmax=1.186-10°[Pa]

®3=0.0 [1/5], 30=0.00 [1/s] C=865.4 [N]

®0=0.02 [1/5] Lubrication surface =20.38 [cm’]
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R=0.0265 [m], 1=0.20 [Pas]
©=0.8 [1/5], ©16=0.09 [1/5]
©3=0.0 [1/5], 023=0.00 [1/5]
©0=0.02 [1/s]

AD [Pa]

pmax

X
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=1/, [s]

Pmax=0.932-10° [Pa]

Cio=670 [N]

Lubrication surface =20.38 [cm’]

Fig. 5. Pressure distributions caused by rotation in & = ¢ direction only (@3 =0, @w3o = 0),
where non-zero values of angular velocity @, = 0.8 s™', and non-zero angular velocity perturbations
w1 in unsteady flow and non-zero angular velocity perturbations @,
of gap height perturbations are taken into account

R=0.0265 [m], n=0.20 [Pas]
®;=0.8 [1/s], ©10=0.09 [1/s]
®3=0.15 [1/s], 030=0.01 [1/s]
@0=0.02 [1/s]

p [Pa]

2.0-10°fF AR

LK

t=0 and t=27/®, [s]
Pmax=2.077-10° [Pa]

Cior=1696 [N]

Lubrication surface =20.38 [cm?]
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R=0.0265 [m], n=0.20 [Pas] =1/, [s]
®1=0.8 [1/s], ®10=0.09 [1/s] Prmax=2.002-10° [Pa]
®3=0.15 [1/s], 30=0.01 [1/s] Cio=1653N]
@0=0.02 [1/s] Lubrication surface =20.38 [cm?]
p[Pa]  Pus
2.0-10°
1.5-10°
1.0:10 N
A iy
0.5-10RAARE ¢

¥

i

e

=
V=

Fig. 6. Pressure distributions caused by rotation of bone head in circumferential direction o = ¢
and simultaneously in meridional direction 3= 9, where non-zero angular velocities
®,=0.8s", w3=0.15 s and non-zero angular velocity perturbations @y, @3 in unsteady flow
and non-zero angular velocity perturbations @, of gap height perturbations are taken into account.
Symbol C, denotes a total pressure

The first pictures in figures 4, 5 and 6 show the pressure distributions for initial and
final times of the period of perturbations of the motion of human joint. The second
pictures in figures 4, 5 and 6 present the pressure distributions for middle time point of
the period of perturbations of the motion. Afterwards the pressure distributions return to
the distributions, which are shown in the first pictures of figures 4, 5 and 6.
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— 2500 —— 3, W30, O (non zero) |
E‘ =-X- ®, ®j9, Wp (non zero)
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Fig. 7. Capacity distributions versus time for three assumptions corresponding to
the three cases presented in figures 4, 5 and 6, i.e. for the motion of bone head
in meridional direction 0, circumferential direction x, and simultaneously
in circumferential and meridional directions v, respectively

Figure 7 presents three curves of total capacity distributions versus time in the range
of time of the perturbation period. Calculations are performed for the following times:
t=07[s], t=mn/Bwo[s], t =2n/3w¢[s], t = W/ wo[s], t = 4n/3wy [s], t = ST/3wy [s],
t=2n/wq [s], ... For the motion of bone head in meridional direction and for the time
t=0,1t="1/wg, t =21/wy, t = 3n/wy, t = 41t/w, We obtain the following values of
capacities: 859 N, 1012 N, 859N, 1012 N, 859 N, respectively. For the motion of bone
head in circumferential direction and for the times t = 0, t = n/w,, t = 21t/ Wy, t = 31/ @,
t =4n/w, we obtain the following values of capacities: 865 N, 670 N, 865 N, 670 N,
865 N, respectively. For simultaneous motion of bone head in circumferential and
meridional directions and for the times ¢t = 0, t = T/ wy, t = 27/wy, t = 3T/ Wy,
t = 4n/w, we obtain the following values of capacities: 1696 N, 1653 N, 1696 N,
1653 N, 1696 N, respectively.

It is easy to see that the pressure distributions and capacities for the times: =0 [s],
t =2n/wy [s], t = 4n/w, [s] have the same values. The pressure distributions and
capacities for the time ¢t = (k — 1)n/wo [s] at k = 2, 3, 4, ... have the same values as
well.

9. Conclusions

In the present paper, analytical and numerical solutions of the pressure and
velocities of synovial fluid for any human joint in curvilinear orthogonal coordinates
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are presented. Periodic perturbations of unsteady lubrication and simultaneously of
viscoelastic properties of the fluid in magnetic field are taken into account. In
numerical calculations, done for the pressure and capacity distributions, only
perturbations of the motion of human hip joint surfaces are included.

A new form of the Reynolds equation derived in this paper tends in particular case
to a well-known form of the Reynolds equation for steady motion being derived in
earlier papers. The results obtained reveal that the total apparent viscosity of synovial
fluid depends on the time and on the velocity deformations. Total apparent viscosity of
synovial fluid changes periodically in time.

An unsteady magnetic induction field equal to 0.1 mT with the frequency of about
60 Hz changes pressure distribution in human hip joint from 1 to 4 per cent.

Appendix

If we substitute solutions (44) for (45), (46) in equation (49), then we have:
® B oap® 4

B 0 IWkdaz +L 0 | L jWkdaz
Oay| hy oa; + hy Oay | hy Oay v

+i ka)(.,p0 Ulkj s1nhF(g—0¢2)Ak]da2 +Vlk_[ 51.nh[a2Ak ]daz
oa, sinh[e 4, ] 0 sinh(e 4,)

1

kw < sinh[(e —a,)A < sinh(a, A4
L 0 (?po h, U3k'[ [( 2) k]da2+V3kI ; (a, k)daz
hy Oa, i sinh[e 4, ] o sinh[e4,]
k h
T e L D
o, hy Oa

fork=1,2,3,..0<a;=9<2nc;,0<1<1,b,=nR/8L a3= §<TR12=b;,0< ay=r.
For further reduction of equation (A1) it is necessary to calculate the following integrals:

ko, p, 4 sinh[(g—az)Ak] ko p, g lema)ay _ ~(ema)d
. ik - da,=—:7 ik.[ A, 4 da,
! 0 sinh gAk] 1 0 et —e
ko, p e i o kg p sd 1 1
= — ik ‘ 4 +eA T — Uy tanhi —* :77ika)0p0Ui{gf—g3Ai+0(€4)}, (A2)
id, oo _ g id, 2 2 12

& & ) eazAk _e_‘ZzAk & eo(zAA _e(g—az)AA
[ Weday=[ {(l‘eam )‘(1‘66“)“4”}“’“2 =] {I‘A}d“z
e k —e k &4y

0 l+e

R Y . 3
_pe 2 lze :g+itanh(g—’4"’jzig—kw0po—0(84)= (A3)
A 1+e A, 2 127

Pk
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&

ke, p, jlsinhazAk kaw,p, I e _ g2 e
0

daz :Vik & Ay —edy

; da,
sinhe4, e e

A, _ -
= ke py v £ 2+e :ka)opo V., tanh 4 :—lika) Y4 S_LS3A2+O(S4) - (A9
- o _ iA ik 2 2 007 ik 12 k

Integrals (A2), (A3), (A4) are inserted into equation (A1). Thus we arrive at equation (50).
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