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This paper presents the author’s numerical contribution to unsymmetrical viscoelastic hydrodynamic 
lubrication of human joints with synovial fluid in periodically changed time and unsteady magnetic field. 
We assume that bone head in human joint moves in two directions, namely in circumference and 
meridian directions. Basic equations describing the flow of synovial fluid in human hip joint are solved 
analytically and numerically. Numerical calculations are performed in Mathcad 2000 Professional 
Program, taking into account the method of finite differences. This method satisfies stability of numerical 
solutions of partial differential equations and values of capacity forces occurring in human joints. 
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1. Preliminaries 

There is a number of current studies whose authors have different approaches to 
the study of joint biomechanics. Lubrication of human joint under unsteady periodic 
conditions and for real viscoelastic properties of synovial fluid has not been examined 
hitherto. Viscoelastic lubrication of human joint in unsteady, periodic motion and 
magnetic field was not considered in the papers [1], [4]–[7], [11]–[19]. In the present 
study, the changes that occur during the viscoelastic lubrication of human joints under 
varying periodic, unsteady conditions are examined. 

In the paper, we assume rotational motion of the human bone, periodic and 
unsteady flow of viscoelastic synovial fluid, periodic time-dependent gap height, 
changeable synovial fluid viscosity, variable geometry of gap height, constant density 
ρ 0 of synovial fluid, and isothermal, incompressible flow of synovial fluid. We also 
assume that bone head can make rotational motion in two directions at two various 
angular velocities (see figure 1). In the case of unsymmetrical flow of synovial fluid, 
three components v1, v2, v3 of its velocity vector depend on the variables α 1, α 2, α 3, 
while the time t and the pressure function p depend on α 1, α 3, t..The gap height ε may be 



K. CH. WIERZCHOLSKI 62 

a function of the variables α 1, α 3 and the time t. The symbol α1 denotes the co-ordinate 
in circumference direction, α 2 is the co-ordinate in gap height direction, α 3 stands for 
a generating line of rotational bone surface or co-ordinate in longitudinal direction. 

2. Basic equations 

The problem of lubrication of human hip joint will be presented by means of the 
conservation of momentum, continuity and Maxwell’s equations [2], [10]: 
 DivS + µ 0(N∇)H = ρ dv/dt,    divv = 0,   ∇2H ≡ µ 0ε ∂2H/∂t2, (1) 
where: S – the stress tensor, v – synovial fluid velocity (m/s), H – the magnetic intensity 
vector (A/m) with the components (H1, H2, H3), N – the magnetization vector (A/m) with 
the components (N1, N2, N3), µ 0 – the magnetic permeability coefficient of free space 
(mkgs–2A–2), ε  – electric permeability coefficient of synovial fluid (s4A2m–3kg–1). We 
assume that synovial fluid is a good insulator, i.e. the electric conductivity coefficient σ = 
0. Moreover, the second-order approximation  of the general constitutive equation given 
by Rivlin and Ericksen can be written in the following form [10]: 
 S = –pI + η0A1 + α (A1)2 + β A2,     A1 ≡ L + LT,  

 A2 ≡ grad a + (grad a)T + 2LTL,     a ≡ Lv +
t∂

∂v , (2) 

where: p – pressure, I – the unit tensor, A1, and A2 – the first two Rivlin–Ericksen 
tensors, L – the tensor of gradient fluid velocity vector (s–1), LT – the tensor of 
transpose of a matrix of gradient vector of a biological fluid (s–1), t – the time (s), a – 
the acceleration vector (m/s2). The symbols: η0, α, β stand for three material constants 
of synovial fluid, where η0 denotes dynamic viscosity (Pas), the symbol β determines 
the pseudoviscosity coefficient (Pas2) and describes the friction forces between 
viscoelastic particles of synovial fluid. The acceleration terms have been neglected. 
Only time derivatives of velocity component have been retained. The tangential and 
vertical acceleration of joint surface, variable in time, is taken into account. We also 
neglect ReΨ and 310/ −≈≡ RεΨ , and the centrifugal forces, where R is the radius of 
curvature of bone surface. We assume that the components of magnetic intensity 
vector and the components of magnetisation vector are constant in the height 
directions of joint gap. We require curvilinear, orthogonal system of co-ordinates α1, 
α2, α3 with the Lamé coefficients h1, h2, h3, respectively. From the boundary 
conditions of thin layer it follows that h2 = 1. After boundary simplifications the 
system of conservation of momentum, continuity and Maxwell’s equations has the 
form of the system (3)–(10). Equations of motion are as follows [9], [10]: 
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Terms multiplied by the factor β describe the influence of viscoelastic properties of 
synovial fluid on the lubrication process. If the coefficient β tends to zero, then set of 
equations (1)–(6) tends to the equations describing the lubrication of human joints 
presented in papers [12]–[19]. Maxwell’s equations are as follows [2]: 

 ∇2H ≡ grad(divH) − rot(rotH) = µ 0 E ∂ 2H/∂t2, (7) 

hence: 
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We denote: µ 0ε ≡ µ 0 ∈ 0 < α1 ≤ 2πc1, 0 < c1 < 1, bm ≡ πR /8 ≤ α 3 ≤ πR /2 ≡ bs, 
0 ≤ α 2 ≤ ε, Hi are the components of magnetic intensity vector H (A/m), ξ ≡ divH, Bi 
= µ 0(Hi + Ni) are the components of magnetic induction vector B in T, Ni = χHi are the 
components of magnetisation vector N (A/m), χ  is dimensionless magnetic 
susceptibility of synovial fluid. In order to derive the solutions of the above set of 
equations, an oscillating periodic motions will be discussed.  
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3. The method of integration 

For the velocity components and the pressure, without loss the generality, the 
following approach has been introduced [8], [9]: 
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where: ω 0 is an angular velocity (s–1) describing periodic perturbations in unsteady flow 
of synovial fluid and magnetic field in joint gap and 1−≡i  is an imaginary unit. 

Gap height has the following form: 
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where: ε~  denotes time-dependent perturbation of the gap height caused by unsteady 
work conditions, ε (k) – time-independent coefficient of perturbations of gap height, ε (0) 
– time-independent primary gap height, and ε tot – the total value of the gap height. 
Because of linear form of equations (3)–(7) a separation of a steady flow from an 
unsteady flow of synovial fluid is possible. We insert series (12)–(14) into the set of 
equations (3)–(7) and we equate terms of the same upper indexes in brackets and the 
same powers of exp functions. Equations of motion for steady conditions in steady 
magnetic field and Newtonian fluid have the form [9]: 
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for 0 ≤ α 1 ≡ ϕ ≤ 2πc1, 0 < c1 < 1, bm ≡ πR/8 ≤ α 3 ≡ ϑ ≤ πR/2 ≡ bs, 0 ≤ α 2 ≡ r ≤ ε . 
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The system of equations (16)–(19) determines an unknown pressure function p(0) 
and the unknown components )0(

3
)0(

2
)0(

1 ,, vvv  of oil velocity vector in the directions α 1, 
α 2, α 3, respectively. 

Maxwell’s equations for steady conditions have the form [2]: 
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at 0 < α 1 ≤ 2π c1, 0 < c1 < 1, bm ≡ π R/8 ≤ α 3 ≤ π R/2 ≡ bs, 0 ≤ α 2 ≤ ε. The system of 
equations (20) determines the unknown components )0(

3
)0(

2
)0(

1 ,, HHH  of magnetic 
intensity vector in the directions α 1, α 2, α 3, respectively. Equations of motion of the k 
steps of correction values for the unsteady periodic motion and conditions have the form 
[8], [9]: 
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for k = 1, 2, 3, ... 0 < α 1 ≤ 2πc1, 0 < c1 < 1, bm ≡ πR/8 ≤ α 3 ≤ πR/2 ≡ bs, 0 ≤ α 2 ≤ ε. 
The symbol: 

 ηk ≡ η0 + ikω 0β  (25) 
denotes an apparent viscosity (Pas). This viscosity depends on the velocity 
deformations caused by the viscoelastic properties (see the coefficient β ) and by the 
angular velocity ω 0 describing periodic perturbations. This fact indicates that synovial 
fluid has non-Newtonian properties. If the coefficient β  tends to zero, then 
viscoelastic and non-Newtonian fluid properties are neglected. 

The system of equations (21)–(24) determines the unknown corrections p(k) of 
pressure function and the unknown corrections )(

3
)(

2
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1 ,, kkk vvv  of the components of oil 
velocity vector in the directions α 1, α 2, α 3, respectively. The Maxwell equations for 
the k steps of corrections caused by unsteady conditions have the form [2]: 
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for k = 1, 2, 3, ... 0 ≤ α 1 ≤ 2πc1, 0 < c1 < 1, bm ≡ πR/8 ≤ α 3 ≤ πR/2 ≡ bs, 0 ≤ α 2 ≤ ε . 
The system of equations (26) determines the unknown corrections )(

3
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2
)(

1 ,, kkk HHH  
of the components of magnetic intensity vector in the directions α 1, α 2, α 3, 
respectively. Before calculations we must insert the following expressions [2] into 
equations (20) and (26): 
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for k = 0, 1, 2, 3, ... 0 ≤ α 1 ≡ ϕ ≤ 2πc1, 0 < c1 < 1, bm ≡ πR/8 ≤ α 3 ≡ ϑ ≤ πR/2 ≡ bs, 
0 ≤ α 2 ≡ r ≤ ε. 

The functions )0(
3
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1 , MM  in equations (16)–(18) and functions )(
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1 , kk MM  for k = 
1, 2, 3, ... in equations (21)–(23) have the following forms: 
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for i = 1, 3, k = 0, 1, 2, 3, ... 0 ≤ α 1 ≡ ϕ ≤ 2πc1, 0 < c1 < 1, bm ≡ πR/8 ≤ α 3 ≡ ϑ ≤ πR/2 
≡ bs, 0 ≤ α 2 ≡ r ≤ ε . 

The functions )0(
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1 ,, HHH  obtained from equations (20) and the functions 

)(
3

)(
2

)(
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expression (28). Such functions are inserted into equations (16), (18), (21), (23). 
Afterwards the system of equations (16)–(19) and system of equations (21)–(24) are 
solved in order to determine the unknown functions p(0), )0(
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4. Boundary conditions 

Bone head develops the angular velocities ω 1 and ω 3 in the directions α 1 and α 3, 
respectively. Acetabulum moves in circumferential α 1 and meridional α 3 directions. 
The gap height changes in the time in vertical direction. Moreover, it is assumed that 
tangential acceleration of bone head surface varies in time. Hence, for the system of 
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equations (16)–(19) and (21)–(24) at i = 1, 3; k = 1, 2, 3, ..., the boundary 
conditions[8], [9], [20] are as follows: 
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Time-independent, average gap height with perturbation assumes the following 
form: 
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where tm is an average time period of the joint gap perturbations, •e – operator of 
a real part of complex number. Velocities of bone and acetabulum surfaces are 
periodically dependent on time. Total tangential velocities of bone surface and 
acetabulum surface in the directions α i have the following forms [4], [5]: 
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where Uik are the time-independent coefficients of tangential velocity changes of bone 
surface at i = 1, 3, k = 1, 2, 3, ..., and Vik are the time-independent constant coefficients 
of tangential velocity changes of acetabulum at i = 1, 3, k = 1, 2, 3, ... 

5. Velocity of synovial fluid and pressure 

5.1. Solutions for stationary flow 

In the first step of solutions, we assume a stationary flow. Dynamic viscosity η0 
can be a function of α1 and α3 only. The system of equations (16)–(19) for boundary 
conditions (29) and (31) at i = 1, 3 has the following solutions [8], [9]: 
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We integrate the continuity equation (19) with respect to the variable α 2. Imposing 
the boundary condition (30) on the velocity component in the gap height direction, we 
obtain: 
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Imposing boundary condition (31) for i = 2 on solution (41), we have: 
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We insert solutions (39) and (40) into (42). Hence, the pressure )0(
1p  for the steady 

conditions and magnetic field is determined by the  following modified Reynolds 
equation: 
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where s ≡ α2/ε, 0 ≤ r ≡ α2 ≤ ε, bm ≤ α3 ≡ ϑ ≤ bs. 
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5.2. Corrections for unsteady flow and viscoelastic properties 

Imposing the boundary conditions (32), (34) on the system of equations (21)–(24) 
we obtain the changes of components of synovial fluid velocities v1, v3 caused by 
viscoelastic properties and unsteady motion in the following form: 
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for i = 1, 3 and k = 1, 2, 3, ... Integrating continuity equation (24) with respect to the 
variable α 2 for boundary condition (33) we obtain: 
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Imposing the boundary condition (36) on the solution (47) we arrive at: 
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If we take into account the rule of differentiation of the integrals with variable 
limits of integration and if we use additionally conditions (34), then equation (48) 
assumes the following form: 
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for k = 1, 2, 3, ... If we insert solutions (44) for i = 1, 3 into equation (49), then after 
final calculations in Appendix we obtain: 
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for k = 1, 2, 3, ... 0 ≤ α 1 ≤ 2πc1, 0 < c1 < 1, bm ≡ πR/8 ≤ α 3 ≤ πR/2 ≡ bs, 0 ≤ α 2 ≤ ε. 
Multiplying both sides of equation (50) by expression )(exp 0tkωi  and equating 

terms of real parts of complex number on both sides of equation, we obtain the 
following sequence of the modified Reynolds equations: 
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for k = 1, 2, 3, ... 0 < α 1 ≤ 2πc1, 0 < c1 < 1, bm ≡ πR/8 ≤ ϑ ≤ πR/2 ≡ bs, 0 ≤ r ≤ ε and 
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Formula (52) shows that total apparent viscosity *
kη  of synovial fluid depends 

additionally on the time t. This fact can be explained only by virtue of rheological 
properties of synovial fluid. The modified Reynolds equation (51) determines the 
following pressure functions: p(1), p(2), …, p(k). These functions define pressure 
corrections caused by the unsteady and viscoelastic properties of the synovial fluid in 
magnetic field. 
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6. Particular cases of human joints 

In a particular case of hip joint with spherical bone head, we have spherical 
coordinates and the Lamé coefficients in the following form: 

 α1 ≡ ϕ,   α 2 ≡ r,   α 3 ≡ ϑ,   h1 = R sin(ϑ /R),   h3 = 1. (53) 

The time-independent coefficients of circumferential velocities of spherical bone 
head can be expressed as (see figure 1): 

( ) ( ) ( ) ϕωϑωϕωϑωω sin,/sin,sin,/sin 331133011110 RURRURURRhU kkkk ≡≡=== , 

  
a) 

b) 

 
c) 
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Fig. 1. Rotational periodic unsteady motion of bone head and acetabulum in two directions: 
a, b – hip joint, c – bone head and acetabulum for arbitrary human joint in periodic motion, n – normal vector 

 2
30

32
10

1 ,
kk kk

ωωωω ≡≡ ,     k = 1, 2, 3, ..., (54) 

where ω 1, ω 10 are angular velocities of spherical bone head and their perturbations in 
circumferential direction (α 1 = ϕ), and ω 3, ω 30 are angular velocities of spherical bone 
head and their perturbations in meridional direction (α 3 = ϑ ). Symbol R denotes in 
this case the radius of spherical bone head. 

           

              

Fig. 2. Range of the region of lubrication on the spherical and hyperbolic bone heads 

In hyperbolical coordinates (α 1, α 2, α 3), for hyperbolic bone head in human joint 
the following Lamé coefficients are valid: 
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with 



Numerical contribution to the viscoelastic lubrication of human joint 73 

wa
a

a
w

b +
≤≤≤≤≤≡ cosarc1,0,π20,1

321 Λ
αεααΛ . 

We make the following notations: a is the smallest radius of the bone cross-
section, a1 = a + w is the largest radius of the bone cross-section, ,1 aaw −≡  2b is the 
joint length.  

The region of lubrication Ω (α 1, α 3) (a bone head) of spherical hip joint in 
spherical co-ordinates and the region of lubrication Ω (α 1, α 3) (an acetabulum) of 
hyperbolic hip joint in hyperbolic coordinates under unsteady conditions are shown 
in figure 2. 

7. Modified Reynolds equations in spherical co-ordinates 

Let us present the modified Reynolds equation for unsteady motion in magnetic 
field, but without viscoelastic properties of synovial fluid, i.e., for β = 0. We assume 
that a centre of spherical bone head is at the point O(0,0,0) and centre of spherical 
cartilage at the point O1(x − ∆ε1, y − ∆ε2, z + ∆ε3). Eccentricity has the following 
value: D ≡ [(∆ε1)2 + (∆ε2)2 + (∆ε3)2]0.5 (see figure 3). In spherical coordinates, we 
assume thin boundary layer, thus for synovial fluid flow we obtain: α 1 = ϕ, α 3 = ϑ and 
the Lamé coefficients (53). We also assume time-independent coefficients of gap 
height perturbations in the form: ε (k) ≡ ε (0)/k2, hence by virtue of (37) an average gap 
height is a sum of infinite series in the following form [3]:  
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Fig. 3. Time-dependent changes of the gap height under boundary conditions 

If left and right sides of equations (43) and (51) are added for k = 1, 2, 3, ..., and 
viscoelastic properties of synovial fluid are neglected, i.e. the coefficient β tends to 
zero, then we arrive at the modified Reynolds equation: 
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where M1 ≡ Mϕ , M3 ≡ Mϑ and the sums of infinite series assume the following forms 
[3]: 
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We have 0 ≤ ϕ ≤ π, πR/8 ≤ ϑ ≤ πR/2 and the gap height has the form ε = Γ0 ε (0), 
whereas Γ0 = 1 for ω0tm = 2π, and Γ0 = 1 + 0.1273π2 for ω0tm = π /6. The modified 
Reynolds equation (59) determines the total pressure function p for unsteady 
conditions in magnetic field. 

8. Numerical calculations 

The pressure distribution p(0) for stationary motion and its corrections p(1), p(2), p(3), ... 
for unsteady flow of synovial fluid with viscoelastic properties can be calculated from 
equations (43), (51) in the lubrication region Ω indicated in figure 3. It is a section of 
the bowl of the sphere. In this case, on the boundary of the region Ω the pressure p(0) 
takes the value of atmospheric pressure pat and corrections of pressures p(k) for k = 1, 2 
are equal to zero. We use the time-depended viscosity (52). 

Total pressure p for the unsteady flow of synovial fluid in hip joint gap without 
viscoelastic properties we determined inside the region Ω from equation (59). On the 
boundary of the region Ω the total pressure p assumes the values of atmospheric 
pressure pat. Numerical calculations are performed for the region Ω : 0 ≤ ϕ ≤ π, πR/8 ≤ 
α 3 ≡ ϑ ≤ πR/2, where Γ0 = 1 for ω0tm = 2π, and ε = Γ0 ε (0), R = 0.0265 [m], ω1 = 0.8 [s–

1], ω 3 = 0.150 [s–1], ω 0 = 0.02 [s–1], ω 10 = 0.09 [s], ω 30 = 0.01 [s], ∆ε1 = 1 [µm], ∆ε2 = 
0.5 [µm], ∆ε3 = 3 [µm], η0 = 0.20 [Pas], ρ0 = 800 [kg/m3]. Minimal value of the gap 
height εmin = 3.0 [µm], and maximal value of the gap height εmax = 7.12 [µm] and we 
take into account the time period t = 2π /ω0. Numerical calculations of pressure 
distributions varying with time are presented in figures 4, 5 and 6. 

Figure 4 shows pressure distribution varying with time caused by rotation (ω3 = 0.15 s–

1) of the bone head in the meridional direction (α3 ≡ ϑ) only for normal hip joint which 
is not affected by magnetic field. We take into account the angular velocity perturbations 
(ω30 = 0.010 s–1) on the spherical head of the bone in meridional directions, i.e., ω1 = 0, 
ω10 = 0. Rotation about the bone head in circumferential direction is not taken into 
account. We assume that acetabulum is motionless, i.e., Vik = 0. We also assume the 
perturbations of the joint gap height in unsteady motion at angular velocity ω0 equal to 
0.02 s–1. For the time t = 0, t = π /ω0, t = 2π /ω0, … we obtain the maximal values of 
pressure, which are 1.067⋅106 Pa; 1.245⋅106 Pa; 1.067⋅106 Pa, …, respectively. 
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Figure 5 shows pressure distribution varying with time caused by rotation (ω1 = 0.8 s–

1) of the bone head in the circumferential direction (α1 ≡ ϕ) for normal hip joint which is 
not affected by magnetic field. We taken into account the angular velocity perturbations 
(ω10 = 0.09 s–1) on the spherical head of the bone in circumferential directions. Rotation 
about the bone head in meridional direction is not taken into account, i.e. ω3 = 0, ω30 = 0. 
Acetabulum is motionless, i.e. Vik = 0. For the sake of a better comparison of numerical 
results, we assume the perturbations of the same gap height at angular velocity ω0 = 
0.02 s–1. For the times t = 0, t = π /ω0, t = 2π /ω0, … we obtain the maximal values of 
pressure, which are 1.186⋅106 Pa; 0.932⋅106 Pa; 1.186⋅106 Pa, …, respectively. 

Figure 6 shows pressure distribution varying with time caused by rotation (ω1 = 
0.8 s–1) of the bone head in the circumferential direction (α1 ≡ ϕ) and simultaneously 
by rotation (ω3 = 0.15 s–1) of the bone head in meridional direction (α3 ≡ ϑ ) for 
normal hip joint being not affected by magnetic field. We take into account the 
angular velocity perturbations (ω10 = 0.09 s–1) on the spherical head in circumferential 
direction (α1 ≡ ϕ) and simultaneously velocity perturbations (ω30 = 0.010 s–1) on the 
spherical head of the bone in meridional directions. We assume the same perturbations 
of gap height in unsteady motion at angular velocity ω0 = 0.02 s–1. For the times t = 0, 
t = π /ω0, t = 2π /ω0, … we obtain maximal values of pressure equal to 2.077⋅106 Pa; 
2.002⋅106 Pa; 2.077⋅106 Pa, …, respectively. 
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Fig. 4. Pressure distributions caused by rotation in α 3 ≡ ϑ direction only (ω1 = 0, ω10 = 0), where 
non-zero values of angular velocity ω3 = 0.15 s–1, and non-zero angular velocity perturbations ω 30 

in unsteady flow and non-zero angular velocity perturbations ω 0 
of gap height perturbations are taken into account 
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Fig. 5. Pressure distributions caused by rotation in α 1 ≡ ϕ direction only (ω3 = 0, ω30 = 0), 
where non-zero values of angular velocity ω1 = 0.8 s–1, and non-zero angular velocity perturbations 

ω10 in unsteady flow and non-zero angular velocity perturbations ω0 
of gap height perturbations are taken into account 
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Fig. 6. Pressure distributions caused by rotation of bone head in circumferential direction α 1 ≡ ϕ  
and simultaneously in meridional direction α 3 ≡ ϑ, where non-zero angular velocities 

ω1 = 0.8 s–1, ω3 = 0.15 s–1 and non-zero angular velocity perturbations ω10, ω30 in unsteady flow 
and non-zero angular velocity perturbations ω0 of gap height perturbations are taken into account. 

Symbol C tot. denotes a total pressure 

The first pictures in figures 4, 5 and 6 show the pressure distributions for initial and 
final times of the period of perturbations of the motion of human joint. The second 
pictures in figures 4, 5 and 6 present the pressure distributions for middle time point of 
the period of perturbations of the motion. Afterwards the pressure distributions return to 
the distributions, which are shown in the first pictures of figures 4, 5 and 6. 
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Fig. 7. Capacity distributions versus time for three assumptions corresponding to 
the three cases presented in figures 4, 5 and 6, i.e. for the motion of bone head 

in meridional direction ◊, circumferential direction ×, and simultaneously 
in circumferential and meridional directions ∇, respectively 

Figure 7 presents three curves of total capacity distributions versus time in the range 
of time of the perturbation period. Calculations are performed for the following times: 
t = 0 [s], t = π /3ω 0 [s], t = 2π /3ω 0 [s], t = π /ω 0 [s], t = 4π /3ω 0 [s], t = 5π /3ω 0 [s], 
t = 2π /ω 0 [s], … For the motion of bone head in meridional direction and for the time 
t = 0, t = π /ω 0, t = 2π /ω 0, t = 3π /ω 0, t = 4π /ω 0 we obtain the following values of 
capacities: 859 N, 1012 N, 859N, 1012 N, 859 N, respectively. For the motion of bone 
head in circumferential direction and for the times t = 0, t = π /ω 0, t = 2π /ω 0, t = 3π /ω 0, 
t = 4π /ω 0 we obtain the following values of capacities: 865 N, 670 N, 865 N, 670 N, 
865 N, respectively. For simultaneous motion of bone head in circumferential and 
meridional directions and for the times t = 0, t = π /ω 0, t = 2π /ω 0, t = 3π /ω 0, 
t = 4π /ω 0 we obtain the following values of capacities: 1696 N, 1653 N, 1696 N, 
1653 N, 1696 N, respectively.  

It is easy to see that the pressure distributions and capacities for the times: t = 0 [s], 
t = 2π /ω 0 [s], t = 4π /ω 0 [s] have the same values. The pressure distributions and 
capacities for the time t = (k – 1)π /ω 0 [s] at k = 2, 3, 4, ... have the same values as 
well. 

9. Conclusions 

In the present paper, analytical and numerical solutions of the pressure and 
velocities of synovial fluid for any human joint in curvilinear orthogonal coordinates 
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are presented. Periodic perturbations of unsteady lubrication and simultaneously of 
viscoelastic properties of the fluid in magnetic field are taken into account. In 
numerical calculations, done for the pressure and capacity distributions, only 
perturbations of the motion of human hip joint surfaces are included. 

A new form of the Reynolds equation derived in this paper tends in particular case 
to a well-known form of the Reynolds equation for steady motion being derived in 
earlier papers. The results obtained reveal that the total apparent viscosity of synovial 
fluid depends on the time and on the velocity deformations. Total apparent viscosity of 
synovial fluid changes periodically in time. 

An unsteady magnetic induction field equal to 0.1 mT with the frequency of about 
60 Hz changes pressure distribution in human hip joint from 1 to 4 per cent. 

Appendix 

If we substitute solutions (44) for (45), (46) in equation (49), then we have: 
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for k = 1, 2, 3, ... 0 ≤ α 1 ≡ ϕ ≤ 2πc1, 0 < c1 < 1, bm ≡ πR /8 ≤ α 3 ≡ ϑ ≤ πR /2 ≡ bs , 0 ≤ α 2 ≡ r.  
For further reduction of equation (A1) it is necessary to calculate the following integrals: 
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Integrals (A2), (A3), (A4) are inserted into equation (A1). Thus we arrive at equation (50). 
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