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Identification of muscle forces in human lower limbs
during sagittal plane movements
Part I: Human body modelling

WOJCIECH BLAJER, KRZYSZTOF DZIEWIECKI, ZENON MAZUR

Institute of Applied Mechanics, Technical University of Radom

The paper presents a human biomechanical model aimed at determining muscle forces during planar
movements such as standing long jumps, vertical jumps and jumps down from a height. Only the hip, knee
and ankle joints are modelled as directly enforced by the muscle forces applied to their tendon attachment
points, and the actuation of the other joints is simplified to torques representing the muscle action. A
systematic construction of the related dynamic equations in independent coordinates is provided, followed
by some guidelines for their use in analysing motion during the flying and support phases.

1. Introduction

The understanding of how human beings are maneuvered can be interesting from
many viewpoints. The determination of muscle forces during movement contributes to
the elucidation of the underlying neural control and is essential for a complex analysis
of internal loads acting on bones and joints; both of considerable importance to
clinicians [1]. The ways the humans are moved/controlled are then also widely
imitated in engineering designs like robots, manipulators and walking machines.
Since the measuring of muscle forces directly within the living beings may be difficult
and even injurious, the other possibility is to estimate them computationally based on
a biomechanical model and some input data obtained from noninvasive
measurements. The need for reliable results obtained this way has stimulated an
increased interest in thorough human body modelling and advanced computational
algorithms [2], [3]. This paper is another contribution in this field. 
The inherent complexity of human body always calls for some modelling simplifications,
and the mathematical models should in general be as complex as necessary and as simple
as possible, which is always a compromise between the analysis thoroughness and
modelling feasibilities. The biomechanical model developed in this paper is aimed at
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analyzing human movements such as standing long jumps, vertical jumps and jumps
down from a height, in which the lower and upper extremities are moving parallel to each
other in the sagittal plane. For these reasons we decided for a planar model of human
body, in which the modelled muscle forces are in fact their projections onto the sagittal
plane. Then, since the attention is focused on lower limb control and loadings, only the
hip, knee and ankle joints are modelled as enforced directly by the muscle forces applied
to their tendon attachment points, and the actuation of the other joints is simplified to
torques representing the muscle action. In this first part of the paper, we present the
foundations for the design of the biomechanical model. A systematic construction of the
related dynamic equations in independent coordinates is then provided, followed by some
guidelines for their use in the analysis of motion during the flying and support phases. 

2. Modelling preliminaries

The human body is modelled as a planar kinematic structure consisting of N = 9
rigid bodies branching from the pelvis in the open chain linkages (see figure 1). The
n = 11 generalized coordinates that describe the position of the ‘flying’ model with
respect to the inertial reference frame are T

HH yx ]...[ 91 ϕϕ=q , where xH and yH

are the coordinates of the hip point H, and the angular coordinates iϕ ( Ni ,...,1= )
are all measured from the vertical direction. The n-degree-of-freedom system is
actuated by k = 8 torques T]...[ 81 ττ=′u representing the muscle action in the joints
– the system is thus underactuated in the flying phase, k < n. 
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Fig. 1. The human biomechanical model

1

4

2

7

14

12
13

9

8

15

4

10
11

3

6

5

*
5

7

8

6

Fig. 2. The muscles in lower limbs
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The attention of this study is focused on the lower limb control and loadings
during sagittal movements. The actuation in the hip, knee and ankle joints needs thus
a more detailed modelling. We identified mF = 15 muscles that produce the control
torques in the three joints (see figure 2), and the respective muscle forces 151 ...,, FF

applied to their tendon attachment points are treated as control inputs instead of 1τ ,

2τ and 3τ . The total vector of 20=+= τmmm F control inputs is then u = [F1  ...  F15

T]... 84 ττ , where 5=τm are the control torques in the other joints (note that *
5τ

included in u is slightly different from 5τ represented in u′ ). Since the mF muscle
forces actuate the motion in the three joints H, K and A, a local control redundancy is
faced, which will be discussed in more detail in part II of this paper. 
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Fig. 3. The tendon attachment points of the 7-th muscle

Using 3N = 27 absolute coordinates T
CCCC yxyx ]...[ 999111 θθ=p , where xCi,

yCi and iθ are the coordinates of the mass center Ci and the orientation angle (here

ii ϕθ = ) of the i-th body segment with respect to the inertial frame, Ni ,...,1= , the
dynamic equations of the flying model expressed in p are the constrained Newton–
Euler equations in the form

�CuBfpM T
g −+=�� , (1)

where ),,,...,,,(diag 999111 CC JmmJmm=M is the generalized mass matrix related to
p, mi and JCi are the mass and mass moment of inertia with respect to Ci of the i-th
segment, T

g gmgm ]00...00[ 91 −−=f contains the gravitational forces, uBf =u
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is the 3N-vector of generalized control forces, with B being the mN ×3 matrix of
distribution of control inputs u in the directions of p, and �Cf T

c −= is the 3N-vector
of generalized reaction forces due to the 162 == kl kinematical joint constraints,
with C being the Nl 3× constraint matrix and T

l ]...[ 1 λλ=� containing the reaction
forces in the joints. 

The formulation of M and fg in equaqtion (1) is evident, and the same concerns the
last τm columns of B related to 84 ...,, ττ – their entries are either 0, 1 or –1 (see [4]
for more details). For example, the 19-th column of B, related to 7τ , has all the
entries equal to zero except the 24-th and 18-th entries (related to 8θ and 6θ ), which
are equal to 1 and –1, respectively. The determination of the first mF columns of B,
related to 151 ...,, FF , is a little more challenging. Let us demonstrate this for the case
of the 7-th column of B, related to F7 (figure 2). Firstly, we must state that the 7-th
muscle tendons are attached to segments 2 and 5, and only these two bodies are
directly affected by F7. This also means that only those entries of the 7-th column of B
that correspond to these two bodies must be found, and the other entries are in
principle equal to zero. The indices of nonzero entries are from 4 to 6 (body 2) and
from 13 to 15 (body 5). The second step is determination of the inertial frame
coordinates T

AAA yx ][ 777 =r and T
BBB yx ][ 777 =r of tendons attachment points A7

and B7 (see figure 3), which are:
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where T
AAA ][ 777 ηξ=� and T

BBB ][ 777 ηξ=� are the coordinates of A7 and B7 in the
local coordinate systems of segments 5 and 2, respectively, and l1 is the length of
segment 2. The nonzero entries of the 7-th column of B are then: 
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where T
CCC yx ][ 555 =r and T

CCC yx ][ 222 =r of mass centers C5 and C2 can be

determined from equation (2) using T
CCC ][ 555 ηξ=� and T

CCC ][ 222 ηξ=� instead

of 7A�  and 7B� , and 
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Following the above procedure for all forces Fj, Fmj ,,1 �= , the first mF columns
of B can be determined. Then, augmenting them by the last τm columns of B defined
above, the whole mN ×3  matrix B can be formulated. 
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Fig. 4. The open-constraint coordinates and the reaction forces in lower extremity joints

The Nl 3× constraint matrix C in equation (1) follows from the joint constraint
equations 

0ppC�0�(p) ==�= �� )( , (5),(6)

i.e., p�C ∂∂= . Since all the k joints in the system are rotary, at each joint two
constraint equations expressing the prohibited relative x and y translations are
introduced, denoted open-constraint coordinates T

lzz ]...[ 1=z , where kl 2= [4].
The constraint equations are then 0�(p)z == , and a particular constraint equation

0)( =piΦ ( li ...,,1= ) depends only on the absolute coordinates of the adjacent bodies
in the respective joint. The open-constraint coordinates in the lower extremity joints
H, K and A and the related reaction forces are illustrated in figure 4. As an example,
the two constraint equations related to K joint are:
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The third and fourth rows of C can then be constructed, not reported here for
shortness, whose nonzero entries will relate only the absolute coordinates of segments
1 and 2. 

3. Dynamic equations in independent coordinates

The projective formulation of joint coordinate method described in [5] is applied
to derive the dynamic equations of the human biomechanical model in coordinates q.
The scheme is based on the relationships between the absolute (dependent)
coordinates p and the independent coordinates q, which state the joint constraint
equations given explicitly. At the position, velocity and acceleration levels the explicit
constraint equations are:

)()()()( qq,�qqDpqqDpqgp ������� +=�=�= , (8),(9),(10)

where qgD ∂∂= is the nN ×3 matrix, and qD� ��= is the 3N vector. As an example,
the absolute coordinates of segment 3 can be expressed in q as follows:

,
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which make the seventh, eighth and ninth entries of equation (8). After introducing
the other components of )(qgp = , D and � defined in equations (9) and (10) can be
obtained. 

Since 0qg� ≡))(( , after inserting equations (8) and (9) into equation (6), it can be
deduced that 0qqDqgC ≡�)())(( , and thus 0CD0DC =⇔= TT – the nN ×3
matrix D is an orthogonal complement to the Nl 3× constraint matrix C in the 3N-
dimensional configuration space related to p [5]. The dynamic equations (1), defined
in the 3N-dimensional linear space related to p� , can then be projected into the n-
dimensional tangential (velocity allowed) and l-dimensional constrained (null
velocity) subspaces, defined by the vectors represented as columns of D and rows of
C. The projection formula is (see [5] for more details)

( ) 0�CuBf�qDM
MC
D

=+−−+�
�

�
�
�

�
−

T
g

T

)(
1

�� , (12)

where equation (10) was substituted for p�� . Considering that 0CD =TT , the first n
equations lead to the requested dynamic equations in q, whose matrix generic form is
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uBfdqM +=+ g�� , (13)

where DMDqM T=)( is the nn × generalized mass matrix related to q;

�MDqq,d T=)( � and g
T

g fDf = are the n-vectors of generalized dynamic forces

related to q due to the centrifugal accelerations and gravitational forces, respectively,
and BDB T= is the mn × matrix of the distribution of the control inputs u in the
directions of q.
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Fig. 5. The foot in contact with the ground

The dynamic equation (13) describes the human body dynamics in the flying
phase. During the support phase, when the feet are in contact with the ground, r = 3
additional constraints are imposed on the system, written symbolically as 0q� =)( .
For the two contact modes seen in figure 5, these constraint equations are:
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02�3

)(
3 =−= ϕΦ a   or  02�4

)(
3 =−= ϕΦ b ,

where x0 and y0 are the inertial frame coordinates of the point to which the reactions
from the ground T][ 321 λλλ=� are reduced. For both modes of the foot–ground
contact seen in figure 5 we reduce the ground reaction to the same point – the end of
instep (segment 3). 

The ground-contact constraint equations at the velocity and acceleration levels are
0qC =� and 0�qC =−�� , respectively, where q�qC ∂∂=)( is the nr × constraint

matrix and qCqq� �
�

� −=),( is the n-vector of constraint-induced accelerations [5]. The

dynamic equations (13) modify then to �CuBfdqM T
g −+=+�� . Introducing an

kn × ( 8=−= rnk ) matrix D such that 0CD0DC =⇔= TT and using the
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projection formula similar to that used in equation (12), the tangential and orthogonal
projections give respectively:

)( uBdfDqMD +−= g
TT �� , (15)

))(()(),,( 111
�uBdfMCCMCuqq� −+−= −−−

g
T� . (16)

Eqation (15) constitutes the ground reaction-free dynamic equations of the
modeled human during the support phase. Note that the number k of these equations is
equal to the number of control torques u′ at the k joints, distributed then in joints H,
K and A into mF muscle forces. Equation (16) supplies one with a formula for
determination of the ground reaction values. 

4. Conclusions

In this first part of the paper, we presented foundations and systematic
construction of a human body biomechanical model aimed at analyzing planar
movements such as vertical or standing long jumps. A hybrid model of control was
used, modelled by means of muscle forces in the lower extremity joints, and
simplified to the torques representing the muscle action at the other joints. Two
different sets of motion equations were derived, separately for the flying phase and
the support phase. The ground reactions during the support phase can also be
determined. In the second part of the paper [6], applications of the developed
mathematical model to the inverse dynamics analysis of human movements will be
discussed. 
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