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Identification of muscle forces in human lower
limbs during sagittal plane movements
Part II: Computational algorithms

WorciecH Brajer, Krzyszror DziEwiecki, ZENON MAZUR

Institute of Applied Mechanics, Technical University of Radom

Using a sagittal model of human body developed in part I, the present paper deals with
computational algorithms related to the inverse simulation problem — the determination of driving
muscle forces in lower limbs using the measured motion characteristics as input data. The control
problem is associated with muscle force redundancy and then affected by the fact that muscles always
generate tensile forces. Computational schemes for the determination of reaction forces in the hip,
knee and ankle joints are also reported/developed and discussed from the view-point of their
effectiveness and applicability.

1. Introduction

In part I of this paper [1], a sagittal n-degrees-of-freedom (7 =11) musculoskeletal
model of human body was developed, aimed at describing planar movements such as
standing long jumps, vertical jumps and jumps down from a height, in which both the
lower and upper extremities are moving parallel to each other in the sagittal plane.
Since the attention is focused on lower limb control and loadings, a hybrid model of
the control u that creates movements in the k£ = 8 joints of the musculoskeletal system
was proposed — the motor control moments in the hip, knee and ankle joints are
modelled by a set of my = 15 muscle forces treated as control inputs, while the
actuation in the other k — 3 = 5 joints is simplified to m, =5 torques representing the

respective muscle action. The dynamic equations of motion for the musculoskeletal
model in # independent coordinates q were derived, initially for the flying phase and
then for the support phase where the feet are in contact with the ground.

The present paper deals with computational algorithms related to the inverse
simulation problem stated as follows: given the measured motion characteristics

q,(®), q,(t) and q,() in an observed movement, determine the control u,(7) that
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forces the system to complete the motion. The control problem is associated with
muscle force redundancy and then affected by the fact that muscles always generate
tensile forces. Computational schemes for the determination of reaction forces in the
hip, knee and ankle joints are also reported/developed and discussed taking account of
their effectiveness and applicability.

2. Determination of inverse simulation control

Two inherently different phases of the sagittal movements considered can be
distinguished: the support phase when the feet are in contact with the ground with no
slip and the flying phase when there is no contact between the feet and the ground.
During the flying phase the gravity forces are the sole external forces on the system,
which are then complemented by the ground reaction forces during the support phase.
The dynamic equations that describe the musculoskeletal model motion in the flying
and support phases are given respectively by equations (I.13) and (I.15), i.e.,
equations (13) and (15) of part I. The inverse dynamics problem stated above requires
then a slightly different computational scheme in the two phases.

2.1. The flying phase control

The first problem that is concerned with the determination of the musculoskeletal
model control during the flying phase stems from the fact that the ‘flying’ human
model is globally underactuated. As is shown in Section 1.2, i.e., Section 2 of part I,

the n-degrees-of-freedom system is actually controlled by k torques ' =[7, ... 7,]"
resulting from the muscle action in the & joints, k < n. The torques 7;, 7, and 7; in
the H, K and A joints are then expressed in terms of muscle forces Fi,..., F|5 treated
as new controls, and the local control redundancy is achieved in the joints related to
the extended control m-vector u=[F, ... F5 7, ... %;]' . Putting the latter problem
aside for a while, let us concentrate on removing the global underactuation.

The generalized control force related to q in equation (I.13), fu = Eu, can

alternatively be written as f, =B'W'. The nxk matrix B’ of distribution of the
control torques u’ in q directions is easy to formulate (see also [2] for illustration),
and the same relates to its orthogonal complement, an X7 matrix A’ (r=n—k)
such that A’B’=0. While the vectors represented as columns of B’ span the
controlled subspace in the n-space related to q, the vectors represented as rows of A’
span the uncontrolled subspace (see [3] for more details), and as such A'B=0 as

well. For the case at hand we have
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00 0 0 0 0 0 0 1 00
0 0 0 0 0 0 0 010
1 -1 0 0 0 0 0 0 00 1
0 1 -1 0 0 0 0 0 00 1
0O 0 I -1 0 0 0 0 00 1

B={0 0 0 1 0 0 0 O0f A"=[0 0 1. (1)
-1 0 0 0 -1 0 0 O 00 1
0 0 0 0 1 -1 -1 0 00 1
00 0 0 0 1 0 0 00 1
0 0 0 0 0 0 1 -I 00 1
0 0 0 0 0 0 0 1| 0 0 1]

Using a formula similar to equation (I.12), the projection of the dynamic equations
(I.13) into the uncontrolled subspace gives

a(q.q.q)=A’(Mq+d-f,)=0, 2)

which is equivalent to r = 3 conditions according to which the mass centre of the
system moves along a parabola (or vertically) and the total angular momentum
remains constant during the flying phase. Based on these conditions we can verify the
accuracy of the motion characteristics measured and the correctness of the

mathematical model constructed, i.e., a(q,,q,,q,) =0 is demanded.
The projection of the dynamic equations into the controlled subspace gives

B"q+B"M'(d-f,)=B"M B 3)
or

B7§+B'M"@d-f,)=B"M 'Bu, @)
respectively, and we use fu =Bu or fu =Bu in equation (I.13). The number k of the
dynamic equations being projected is now equal to the number of joints (and motor
control torques u’) in the system, and the global underactuation of the system is
removed. More strictly, B’ M~'B’ in equation (3) is a positive definite k Xk matrix

and W), (¢) can be calculated as
u, (1) =[H'(q, ()] "'h(q, (1),q,().q,1)), 5
where H'=B”M~'B’ and h=B"q+B"M'(d-f,).

The other question is connected with the distribution of the joint torques in the
lower extremity joints H, K and A into the muscle forces Fi, ..., Fis. Mathematically
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the problem can be associated with the solution of k algebraic equations, obtained
from equation (4) after substituting q,(t), q,(r) and q,(t), with respect to m
unknowns u, k < m (here k = 8 and m = 20; see Section 1.2 for details). The redundant
control problem is usually solved using different optimization techniques, see, e.g.,
[4]-[6]. One possibility of this type is to apply the pseudoinverse method [7], which,
for the case at hand, consists in formulating a pseudoinverse to the rectangular k Xm
matrix H=B"M 'B introduced into equation (4), i.e., the mXk matrix
H' =H"(HH")"' such that HH' =1 (the mXm identity matrix). Using the

pseudoinverse, U, (f) can be calculated from equation (4) according to the scheme

u,(t)=H'(q,®)) h(g,®),q,),q,1), (6)

where h is as defined in equation (5). It can be demonstrated [6] that the

pseudoinverse technique automatically computes the solution which minimizes the

norm J=u'u=ul+ ... u’.

An inherent feature of the mathematical solution obtained from equation (6) is that
both positive and negative muscle forces may be generated. In the case, some of the
muscle forces determined are negative, they should be set to zero (or small positive
values), and the calculations should be repeated until all the muscle forces are either

positive or vanish.

2.2. The support phase control

The musculoskeletal model dynamics during the support phase was given a
detailed description in Section 1.3. Due to the slipless feet contact with the ground,
r =3 constraints are imposed on the system, and the dynamic equations in q are
projected into the k =n—r dimensional unconstrained subspace and r dimensional
constrained subspace, resulted in equations (I.15) and (I.16), respectively. Using

alternatively fu =Bu’ or fu =Bu, equation (I.15) can be rearranged to
D'Mq-D'(d-f,)=D'B'W (7
or
D'Mq-D"(d-f,)=D'Bu, (8)

where D is the nxk matrix defined in equation (I1.9). Due to this projection into the
unconstrained subspace, the global underactuation of the system dynamics is
removed, and equations (7) and (8) correspond closely to equations (3) and (4).
Resembling the previous case, D’B’ is an invertible kxk matrix and uj(f) can be
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calculated from equation (5) after substituting H'=D'B’ and h :ﬁTMij—
BT(H—fg). Then, since both the matrices D’B in equation (8) and B”M'B in
equation (3) are of dimension kxm, u,(f) can be calculated according to equation
(6) using H = D'B and its pseudoinverse.

Having the inverse simulation control u,(f) determined, the reactions from the
ground can be found as Id(t)=I(qd(t),(']d(t),ud(t)) using equation (1.16). The
computed values of ground reactions can possibly be compared with the measured

ones, which may be another criterion for verification of the accuracy of the motion
characteristics measured and correctness of the mathematical models built.

3. Determination of joint reaction forces

The evaluation of internal loads acting on joints, which may be especially high in
the upward propulsion and landing phases of jumps, can be essential for a
comprehensive inverse dynamic analysis of the sagittal movements under
consideration. The information related to the question of which loads cross the joints
during these and other activities may be of considerable interest to the clinicians as
well. There are at least three possible computational algorithms related to the
problem.

A chronologically oldest scheme for the determination of joint reactions is based
on D’ Alembert’s principle. With reference to the formulation of the present paper, the
scheme can be based on the initial dynamic equations in absolute coordinates p,
reported in equation (I.1), and must be proceeded, firstly, by the determination of
u, (1) and then p,(t), p,(t) and p,(¢) using the kinematic relationships represented
by equations (1.8), (I1.9) and (1.10), i.e.,

p,()=g(q,(®); pd (t)=D(q,(®)) ('ld )

B (1) =D (1) (1) +7(a (1)1, 1)) ©)

During the support phase, the right-hand side of equation (I.1) needs also to be
supplemented with the appropriately involved (and previously determined/measured)
ground reactions to the feet. Fulfilled these preliminary calculations, the joint reaction

forces A, (t)=[A,() -+ A4,®)]" can be determined recursively using d’Alembert’s

method and starting from the external segments of the modelled human body
(segments 4, 7 and 9) and going inward. The scheme is rather laborious and
cumbersome in computer applications.
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The second scheme arises from the last / equations of the projection formula
introduced into equation (I.12). This projection into the null velocity subspace yields

Mg.qu)=(CM'CH'CM'(f, +Bu)—y), (10)

where C is the /X3N matrix of joint constraints defined in equation (1.6) as C(p),
rearranged then to C[g(q)] after using equation (I.8). The determination of joint
reaction forces from equation (10) can then be written symbolically as A, (1) =

A(q,(1),q,(t),u,(1)). The above scheme is decidedly computer-oriented. However,
there are three main disadvantages of the scheme (compared to the third scheme
presented in the sequel). Firstly, the joint constraint equations in the implicit form of
equation (I.5) and the arising /X3N matrix C need to be formulated, which are not
needed for the derivation of dynamic equations (I.12). This means some additional
modelling effort. Secondly, the X/ (here 16x16) matrix CM'C’ needs to be
formulated and then inverted, which may be a cumbersome task. And finally, all the
[ constraint reactions A need to be determined, while one may be interested in the
constraint reactions only in some joints.

The third scheme for the determination of joint reaction forces uses an augmented
formulation of the joint coordinate method [8] reported in Section 1.3. In this method,
instead of the joint constraint equations given in an explicit form of equation (8), an
augmented explicit form of these equations is introduced, i.e.,

p=g(q.z), (11)

where z=[z .. z;]' are open-constraint coordinates that describe the prohibited
relative motions in the joints. Specifically, since z =0, equation (11) is virtually
equivalent to the explicit constraint equation P =g(q), and the dependence on z is
needed only to grasp the prohibited motion directions related to z — the directions of
constraint reactions in the respective joints. Moreover, the open-constraint coordinates can
be introduced only into those joints in which the reaction forces are to be determined. In
the case at hand, we open thus only the hip, knee and ankle joints, and thus

2=[2, 2, 23 2, 25 2] as can be seen in figure 1.4. Only /" =6 reaction forces
MV=[4 A4 A4 A4 A A" in the lower extremity joints will thus be determined, where
)" is a subset of A introduced into equation (I.1). As an example, the relations
represented by equation (L.11) that correspond to P=g(q) in the augmented form
P=8(q.7) are:
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Xey =Xy 1 SIn@ + 2, + 1, Sin @, + 25 + &y sin @, + 7] COS @,
Ye3 = Vi — 1l cos @ + 2, =1, COS Py + 25 = $3 COS Y5 +T]c5 8in @, (12)
0, = ¢;.

As can be seen, the augmentation is a rather trivial task. By differentiating
equation (11) with respect to time and then setting z =0, one arrives at

. _(odg . (og
p_[aql_qur(azj

while the explicit formulation of the constraint equation P =g(q) yields simply

z=D(q)q+E(Q)z, (13)

z=0

P =D(q)q. Because the joints in the system are all movable, all the entries of E are
equal either to 0, 1 or —1.

The 3N xI" (here 27x6) matrix E produced in equation (13) has the features of
a pseudoinverse matrix to the rectangular /" x3N matrix C* which is composed of
those rows of matrix C which correspond to the open-constraint coordinates z, i.e.,

C'E=1 & E'C =1. where I denotes the " x[* identity matrix. On the other
sl

hand, E7C*™ =(, where C™ contains the other rows of C (not contained in C*). By

denoting C=[C" € |", we have finally
I T T
CE= ol © E'C"=[1 o]. (14)

With the use of E defined as above, the projection formula reported in equation
(I.12) can be modified to [8]

D’ .

L}T}(M(qu)—fg—Bu+CTx):0. (15)
The first £ = 8 components of equation (15) lead to the dynamic equations in ¢

given by equation (I.13), and the last /" = 6 components of equation (15) result in

2 (9,9,0,0) =E"[f, tBu-M(Dq +7)], (16)

which offers the requested effective formula for the determination of joint reaction
forces in the lower extremity joints, A, (¢)=4"(q, ().q,(1),q,().u, (1)) . As is seen,
in the present scheme, the joint reaction forces are obtained directly in a ‘resolved’
form (no matrix inversion is involved). The scheme does not require the implicit

form of the joint constraint equations either, which does not need to be introduced at
all. Finally, the constraint reactions only in some chosen joints can be determined.
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As a final remark related to the problem of determination of joint reaction forces,
let us note that the joint reactions determined by using each of the methods mentioned

will be different, depending on f, =Bu or f, =B’u” involved. In the latter case, the

internal tensile forces exerted by muscle on bones (segments of the musculoskeletal
model) are neglected which may spoil the reliability of calculation results.

4. Conclusions

The determination of muscle forces during human movements can play an
important role in a deeper understanding of the underlying neural control. It can also
be essential for the analysis of internal loads acting on bones and joints. While in part
I of this paper a background to the mathematical modelling of human sagittal
movements and control was presented, in this paper we developed some related
computational algorithms. Based on the measured motion characteristics as the input
data, computational schemes for the synthesis of driving muscle forces in the lower
limbs and motor control torques in the other joints were introduced, being built in
slightly different ways for the flying and support phases of the sagittal jump
movements analyzed. The discussed pseudoinverse technique of distribution of motor
control torques in the lower limb joint into the respective muscle forces is only one of
a huge variety of optimization methods. Since many of them give practically
equivalent results [5], the proposed automatic method based on pure matrix
manipulations seems to be a reasonable choice. Finally, the ranges of computational
schemes for the determination of reaction forces in the hip, knee and ankle joints were
reported. The novel approach following from the augmented joint coordinate method
seems to have the advantage over the other methods, taking account of both the
modelling and computations as well as its simplicity and effectiveness.
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