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Biomechanics of the brain for computer-integrated surgery

KAROL MILLER*, ADAM WITTEK, GRAND JOLDES

Intelligent Systems for Medicine Laboratory, School of Mechanical Engineering, The University of Western Australia.

This article presents a summary of the key-note lecture delivered at Biomechanics 10 Conference held in August 2010 in Warsaw.
We present selected topics in the area of mathematical and numerical modelling of the brain biomechanics for neurosurgical simulation
and brain image registration. These processes can reasonably be described in purely mechanical terms, such as displacements, strains and
stresses and therefore can be analysed using established methods of continuum mechanics. We advocate the use of fully non-linear the-
ory of continuum mechanics. We discuss in some detail modelling geometry, boundary conditions, loading and material properties. We
consider numerical problems such as the use of hexahedral and mixed hexahedral–tetrahedral meshes as well as meshless spatial discreti-
sation schemes. We advocate the use of Total Lagrangian Formulation of both finite element and meshless methods together with explicit
time-stepping procedures. We support our recommendations and conclusions with an example of brain shift computation for intra-
operative image registration.
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1. Introduction

Mathematical modelling and computer simulation
are standard tools commonly used in engineering. Com-
putational mechanics has had a profound impact on sci-
ence and technology. It allows simulation of complex
systems that would be very difficult or impossible to
treat using analytical methods. A challenging task for the
future is to extend the success of computational me-
chanics to fields outside traditional engineering, in par-
ticular to biology, biomedical sciences, and medicine [1].

In computational sciences, the selection of the
physical and mathematical model of the phenomenon
to be investigated has a major influence on the accu-
racy of the simulation results. Model selection is often
a very subjective process; different modellers may
choose different models to describe the same phe-
nomenon. Nevertheless, valid computer simulations of
a physical reality cannot be obtained without a proper
model selection [1].

In this paper, we show how various aspects of com-
puter-integrated neurosurgery can benefit from the appli-
cation of the methods of computational mechanics. We
discuss issues related to the model selection and the
numerical algorithms used for obtaining the solution. We
chose to focus on the following two application areas:
neuroimage registration and neurosurgical simulation.

1.1. Computational radiology

NAKAJI and SPELTZER [2] list the “accurate local-
isation of the target” as the first principle in modern
neurosurgical approaches. Neurosurgical interventions
have extremely localised areas of therapeutic effect.
As a result, they have to be applied precisely in rela-
tion to the patient’s current (i.e. intra-operative) anat-
omy, directly over the specific location of anatomic or
functional abnormality [3].

If only pre-operative anatomy of the patient is pre-
cisely known from medical images (usually Magnetic
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Resonance Images (MRI)), it is now recognised that
the ability to predict soft organ deformation (and
therefore intra-operative anatomy) during the opera-
tion is the main problem in performing reliable sur-
gery on soft organs. We are particularly interested
in problems arising in image-guided neurosurgery
(figure 1). In this context, it is very important to be
able to predict the effect of procedures on the position
of pathologies and critical healthy areas in the brain. If
displacements within the brain can be computed dur-
ing the operation, they can be used to warp pre-
operative high-quality MR images so that they repre-
sent the current, intra-operative configuration of the
brain.

The neuroimage registration problem involves
large deformations, non-linear material properties and
non-linear boundary conditions as well as the difficult
issue of generating patient-specific computational
models. However, it is easier than the surgical simu-
lation problem in two important ways: we are inter-
ested in accurate computations of the displacement
field only, accuracy of stress computations is not re-
quired; and the computations must be conducted intra-
operatively, which practically means that the results
should be available to an operating surgeon in less
than 40 seconds [4]–[7]. This still forms a stringent
requirement for computational efficiency of the meth-
ods used, but is much easier to satisfy than a 500 Hz
haptic feedback frequency requirement for neurosur-
gical simulation [8].

1.2. Simulation for
neurosurgery planning,

medical training and skill assessment

The goal of surgical simulation research is to
model and simulate deformable materials for applica-
tions requiring real-time interaction. Medical applica-
tions for this include simulation-based training, skills
assessment and operation planning.

Surgical simulation systems are required to pro-
vide visual and haptic feedback to a surgeon or
trainee. Various haptic interfaces for medical simula-
tion are especially useful for training surgeons for

minimally invasive procedures (laparoscopy/interven-
tional radiology) and remote surgery using tele-
operators. These systems must compute the deforma-
tion field within a soft organ and the interaction force
between a surgical tool and the tissue to present visual
and haptic feedback to the surgeon. Haptic feedback
must be provided at the frequencies of at least 500 Hz
[8]. From a solid-mechanical perspective, the problem
involves large deformations, non-linear material prop-
erties and non-linear boundary conditions. Moreover it
requires extremely efficient solution algorithms to sat-
isfy stringent requirements imposed on the frequency
of haptic feedback. Therefore, surgical simulation is
a very challenging problem of solid mechanics.

When a simulator is intended to be used for sur-
geon training, a generic model developed from aver-

Fig. 1. Comparison of the brain surface determined from images acquired pre-operatively with the intra-operative images
acquired after craniotomy. The pre-operative position of the tumor is shown against the intra-operative tumor segmentation.

MRI images were provided by the Department of Surgery, Brigham and Women’s Hospital
(Harvard Medical School, Boston, Massachusetts, USA)
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age organ geometry and material properties can be used
in computations. However, when the intended applica-
tion is for operation planning, the computational model
must be patient-specific. This requirement adds to the
difficulty of the problem – the question of how to rapidly
generate patient-specific computational models still
awaits a satisfactory answer.

Following the Introduction (Section 1), in Section 2
we discuss the issues related to modelling geometry,
boundary conditions, loading and material properties
of the brain, and numerical algorithms devised to effi-
ciently solve brain deformation behaviour models. In
Section 3, we consider an example application in the
area of computational radiology – brain shift compu-
tation for neuroimage registration. We conclude with
some reflections about the state of the field.

2. What is and
what is not important
in modelling the brain

biomechanics?

2.1. Geometry discretisation

Detailed geometric information is needed to define
the domain in which the deformation field needs to be
computed. In applications that do not require patient-

specific data (such as neurosurgical simulators for edu-
cation and training), the geometric information provided
by brain atlases [9]–[12] is sufficient. However, other
applications such as neurosurgical simulators for opera-
tion planning and image registration systems require
patient-specific data. Such data are available from ra-
diological images (for example, see figure 2); however,
they are significantly inferior in quality to the data avail-
able from anatomical atlases. The brain model should
contain the brain parenchyma, ventricles and tumour (if
present) that need to be identified in radiological images
(in practice, magnetic resonance images).

The accuracy of neurosurgery is not better than
1 mm [3]. Voxel size in high quality pre-operative
MR images is usually of similar magnitude. There-
fore, we can conclude that patient-specific models of
the brain geometry can be constructed with approxi-
mately 1-mm accuracy, and that higher accuracy is
probably not required.

A necessary step in the development of the nu-
merical model of the brain is the creation of a compu-
tational grid which in most practical cases is a finite
element mesh or a cloud of points required by a mesh-
less method. Because of the stringent computation time
requirements, the mesh must be constructed using low
order elements that are not computationally intensive.
The linear under-integrated hexahedron is the pre-
ferred choice.

Many algorithms are now available for fast and
accurate automatic mesh generation using tetrahedral
elements, but not for automatic hexahedral mesh gen-

Fig. 2. 3D magnetic resonance image presented as a tri-planar cross-section. Parts of the tumor and
ventricles are clearly visible. Public domain software Slicer (www.slicer.org) developed by our collaborators

from Surgical Planning Laboratory, Harvard Medical School, was used to generate the image
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eration [13]–[15]. Template-based meshing algo-
rithms can be used for meshing different organs using
hexahedrons [16]–[18], but these types of algorithms
work only for healthy organs. In the case of severe
pathologies (such as a brain tumour), such algorithms
cannot be used, as the shape, size and position of the
pathology are unpredictable. This is one reason why
many authors propose the use of tetrahedral meshes
for their models [4], [5], [19], [20]. In order to auto-
mate the simulation process, mixed meshes having
both hexahedral and linear tetrahedral elements are
the most convenient (see figure 3).

Fig. 3. Patient-specific hexahedron-dominant brain mesh,
including ventricles and tumor

The under-integrated hexahedral elements require
the use of an hourglass control algorithm in order to
eliminate the instabilities, known as zero energy
modes, which arise from the single-point integration.
One of the most popular and powerful hourglass con-
trol algorithms, that is currently available in many
commercial software finite element packages, is that
proposed in [21]. This method is applicable to hexa-
hedral and quadrilateral elements with arbitrary ge-
ometry undergoing large deformations. We adapted

this method to the Total Lagrangian Formulation so
that many quantities involved can be pre-computed
[22], making the hourglass control mechanism very
efficient from the computational point of view.

In the modelling of incompressible continua, arti-
ficial stiffening (often referred to as volumetric lock-
ing) affects many standard elements, including the
linear tetrahedral element, see, e.g., [23]. This phe-
nomenon occurs also for nearly incompressible mate-
rials and therefore introducing slight compressibility
does not solve the problem. A number of improved
linear tetrahedral elements with anti-locking features
have been proposed by different authors [24]–[27].
The average nodal pressure (ANP) tetrahedral element
proposed in [24] is computationally inexpensive and
provides much better results for nearly incompressible
materials compared to the standard tetrahedral ele-
ment. Nevertheless, one shortcoming of the ANP ele-
ment and its implementation in a finite element code
is the handling of interfaces between different materi-
als. We extended the formulation of the ANP element
so that all elements in a mesh are treated in the same
way, requiring no special handling of the interface
elements [28].

An alternative to using the finite element method is
to use our recently developed Meshless Total Lagran-
gian Explicit Dynamics algorithm (MTLED) [29].
The problem of computational grid generation disap-
pears as one needs only to drop a cloud of points into
the volume defined by a 3D medical image [30]–[35],
see figure 4.

The use of meshless methods is motivated by sim-
ple, automatic computational grid generation for pa-
tient-specific simulations. We use a modified Ele-
ment-Free Galerkin method [29] that is meshless in
the sense that deformation is calculated at nodes that

Fig. 4. A 2D slice of the brain discretised by nodes of MTLED [29] method (a);
and quadrilateral finite elements (b). Development of a good-quality finite element mesh is time-consuming.

Generation of the meshless grid is almost instantaneous

a) b)
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are not any part of an element mesh. Node placement
is almost arbitrary. Volumetric integration is per-
formed over a regular background grid that does not
conform to the simulation geometry.

2.2. Boundary conditions

The formulation of appropriate boundary condi-
tions for computation of brain deformation constitutes
a significant problem because of complexity of the
brain–skull interface, see figure 5.

A number of researchers fix the brain surface to the
skull [37], [38]. We do not recommend this approach.
Our experience [7], [39]–[42] suggests that a small gap
between the brain and the skull allows the motion of
the brain within the cranial cavity. Therefore a simple
and effective model of the brain–skull interface is
a frictionless contact that allows separation.

As the skull is orders of magnitude stiffer than
the brain tissue, its rigidity can be assumed. In order
to handle the brain–skull interaction we developed
a very efficient algorithm that treats this interaction as
a finite sliding, frictionless contact between a deform-
able object (the brain) and a rigid surface (the skull)
[43]. Unlike contacts in commercial finite element
solvers (e.g. ABAQUS, LS-DYNA), our contact algo-
rithm has no configuration parameters (as it only im-
poses kinematic restrictions on the movement of the
brain surface nodes) and is very fast, with the speed

almost independent of the mesh density of the skull
surface.

2.3. Loading

We advocate loading the models through imposed
displacements on the model surface [7], [41], [44], see
figure 6. In the case of neurosurgical simulation, this
loading will be imposed by a known motion of a sur-
gical tool. In the case of intra-operative image regis-
tration, the current (intra-operative) position of the

exposed part of the brain surface can be measured
using a variety of techniques [45]. This information
can then be used to define model loading.

Fig. 5. Structure of the brain–skull interface, adapted from [36]

Fig. 6. Model loading through prescribed nodal displacements
at the exposed brain surface
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As suggested in papers [44], [46]–[48] for prob-
lems where loading is prescribed as forced motion of
boundaries, the unknown deformation field within the
domain depends very weakly on the mechanical prop-
erties of the continuum. This feature is of a great im-
portance in biomechanical modelling where there are
always uncertainties in patient-specific properties of
tissues.

2.4. Mechanical properties
of brain tissue

Experimental results show that the mechanical re-
sponse of brain tissue to external loading is very com-
plex. The stress–strain relationship is non-linear with
the stiffness of the brain in compression much higher
than in extension. There is also a non-linear relation-
ship between stress and strain rate. To account for such
complicated mechanical behaviour we proposed the
Ogden-based hyper-viscoelastic constitutive model of
the following form [49], [50]:
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where W is the strain energy, λ1, λ2, λ3 are the principal
extensions, α is a material coefficient without physical
meaning. We identified the value of α to be –4.7 (see
table 1). t and τ denote time. Equation (2) describes
viscous response of the tissue. μ0 is the instantaneous
shear modulus in the undeformed state. τk are charac-
teristic relaxation times.

The material constants (identified from experi-
ment) are given in table 1.

One advantage of the model proposed is that the
implementation of the constitutive equation presented
here is already available in commercial finite element
software [51]–[53] and can be used immediately for
larger scale computations.

It is important to examine the simplifying assump-
tions behind the model described by equations (1) and
(2), and table 1: incompressibility and isotropy.

1. Incompressibility. Very soft tissues are most of-
ten assumed to be incompressible, see, e.g., [54]–[60].
In experiments on brain tissue at moderate strain rates,
we have not detected a departure from this assumption
[61].

2. Isotropy (i.e. mechanical properties are assumed
to be the same in all directions). Very soft tissues do
not normally bear mechanical loads and do not exhibit
directional structure (provided that the sample consid-
ered is large enough: for the brain we used the sam-
ples of 30-mm diameter and 13 mm in height). There-
fore, they may be assumed to be initially isotropic,
see, e.g., [49], [54], [60], [62]–[67].

Average properties, such as those described above,
are not sufficient for patient-specific computations of
stresses and reaction forces because of the very large
variability inherent to biological materials. This is
clearly demonstrated in the biomechanic literature, see
e.g., [49], [50], [68], [69]. Unfortunately, despite re-
cent progress in elastography using ultrasound [70]
and magnetic resonance [71], [72], reliable methods
of measuring patient-specific properties of the brain
are not yet available.

2.5. Solution algorithms

The algorithms implemented in the great majority
of commercial finite element programs use the Up-
dated Lagrangian formulation, where all variables are
referred to the current (i.e. from the end of the previ-
ous time step) configuration of the system (Ansys
[73], ABAQUS [51], ADINA [74], LS-DYNA [52],
etc.). The advantage of this approach lies in the sim-
plicity of incremental strain description and low inter-
nal memory requirements. The disadvantage is that all
derivatives with respect to spatial coordinates must be
recomputed in each time step, because the reference
configuration is changing.

We use the Total Lagrangian Formulation, where
all variables are referred to the original configuration
of the system. The decisive advantage of this formu-
lation is that all derivatives with respect to spatial
coordinates are calculated with respect to the original
configuration and therefore can be pre-computed –
this is particularly important for time-critical applica-

Table 1. List of material constants for the constitutive model of brain tissue,
equations (1) and (2), n = 2 [49]

Instantaneous response k = 1 k = 2
μ 0 = 842 (Pa)

a = –4.7
characteristic time t1 = 0.5 (s)

g1 = 0.450
characteristic time t2 = 50 (s)

g2 = 0.365
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tions such as surgical simulation and intra-operative
image registration.

Because biological tissue behaviour can be described
in general using hyper-elastic or hyper-viscoelastic
models, such as that given in equations (1) and (2), the
use of the Total Lagrangian Formulation also leads to
a simplification of material law implementation as
these material models can easily be described using
the deformation gradient.

The integration of equilibrium equations in the
time domain can be done using either implicit or ex-
plicit methods [75]–[77]. The most commonly used
implicit integration methods, such as Newmark’s con-
stant acceleration method, are unconditionally stable.
This implies that their time step is limited only by the
accuracy considerations. However, the implicit meth-
ods require the solution of a set of non-linear algebraic
equations at each time step. Furthermore, iterations
need to be performed for each time step of implicit
integration to control the error and prevent diver-
gence. Therefore, the number of numerical operations
per each time step can be of three orders of magnitude
larger than that for explicit integration [75].

On the other hand, in explicit methods, such as the
central difference method, treatment of non-linearities
is very straightforward and no iterations are required.
By using a lumped (diagonal) mass matrix [75], the
equations of motion can be decoupled and no system
of equations must be solved. Computations are done
at the element or support domain level eliminating the
need for assembling the stiffness matrix of the entire
model. Thus, the computational cost of each time step
and internal memory requirements for explicit inte-
gration are substantially smaller than those for im-
plicit integration. There is no need for iterations any-
where in the algorithm. These features make explicit
integration suitable for real time applications.

However, the explicit methods are only condition-
ally stable. Normally, a severe restriction on the time
step size has to be included in order to receive satis-
factory simulation results. Stiffness of soft tissues is
very low [49], [50], [64], [78], e.g. stiffness of the
brain is of about eight orders of magnitude lower than
that of common engineering materials such as steel.
Since the maximum stable time step is (roughly
speaking) inversely proportional to the square root of
Young’s modulus divided by the mass density [52], it
is possible to conduct simulations of brain deforma-
tion with much longer time steps than in typical dy-
namic simulations in engineering. This was confirmed
by our previous simulations of brain shift using the
commercial finite element solver LS-DYNA [7], [40].
Therefore, when developing the suite of finite element

algorithms for computation of brain tissue deforma-
tion, we combined Total Lagrange Formulation with
explicit time integration.

A detailed description of the Total Lagrange Ex-
plicit Dynamics (TLED) algorithm is presented in
[79]. The main benefits of the TLED algorithm are:

• the possibility of pre-computing many variables
involved (e.g. derivatives with respect to spatial coor-
dinates and hourglass control parameters),

• no accumulation of errors – increased stability
for quasi-static solutions,

• easy implementation of the material law for hy-
per-elastic materials using the deformation gradient,

• straightforward treatment of non-linearities,
• no iterations required for a time step,
• no system of equations needs to be solved,
• low computational cost for each time step.

3. Application example

3.1. Modelling the brain for
image registration – computer

simulation of the brain shift

A particularly exciting application of non-rigid
image registration is in intra-operative image-guided
procedures, where high resolution pre-operative scans
are warped onto sparse intra-operative ones [6], [80].
We are in particular interested in registering high-
resolution pre-operative MRI with lower quality intra-
operative imaging modalities, such as multi-planar
MRI and intra-operative ultrasound. In achieving the
accurate matching of these modalities, accurate and
fast algorithms to compute tissue deformations are
fundamental.

Here we present the examples of computational re-
sults of brain shift. To account for various types of
situations that occur in neurosurgery, we analyzed five
cases of craniotomy-induced brain shift with tumor
(and craniotomy) located anteriorly (cases 1 and 2),
laterally (case 3) and posteriorly (cases 4 and 5) (fig-
ure 7). For the cases studied the maximum craniot-
omy-induced displacement of the cortical surface,
as observed on intra-operative MR images, was about
7.7 mm. Three-dimensional patient-specific brain
meshes were constructed from the segmented preop-
erative magnetic resonance images (MRIs). The seg-
mentation was done using seed growing algorithm
followed, in some cases, by manual corrections (fig-
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ure 7). A detailed presentation of the meshes’ proper-
ties is given in table 2.

A neo-Hookean material model was used for the
brain tissue and tumor. Based on the published ex-
perimental data [49] a value of 3000 Pa was used for
the Young’s modulus of parenchyma. The Young’s
modulus of the tumor was chosen two times larger
than that of the parenchyma, which is consistent with
the experimental data of SINKUS et al. [71]. Following
[7], we used Poisson’s ratio of 0.49 for the brain pa-
renchyma and tumor. It is worth noting that, as the
model was loaded with the enforced motion of the
exposed part of the surface of the brain, the resulting
displacement field is almost insensitive to the mechani-
cal properties of brain tissue. This is an important
result that allows using biomechanical models for intra-
operative image registration without knowing pre-
cisely patient-specific properties of the tissue [41].

Universally accepted “gold standards” for valida-
tion of nonrigid registration techniques have not been
developed yet [81]. Objective metrics of the images’
alignment can be provided by automated methods
using image similarity metrics (such as, e.g., Mutual
Information and Normalized Cross-Correlation). One

of the key deficiencies of such metrics is that they
quantify the alignment error in terms that do not have
any straightforward geometrical (in Euclidean sense)
interpretation.

To provide an error measure that enables such in-
terpretation, we compared X, Y and Z bounds of the
ventricles determined from the intraoperative seg-
mentations and obtained by registration (i.e. warping
using the predicted deformation field) of the preop-
erative data. The bounds provide six numbers that can
be geometrically interpreted as the X, Y and Z coordi-
nates of vertices P1 and P2 defining a cuboidal box
bounding the ventricles (see figure 8). The difference
between the coordinates of these vertices determined
from the intraoperative MRIs and predicted by our
biomechanical models was used as a measure of the
alignment error. The coordinates of the vertices P1 and
P2 can be determined automatically, which makes
such difference less prone to subjective errors than the
measures based on anatomical landmarks selected by
experts. We provide no error measure for the tumor
registration as we were not able to quantify reliably
the intra-operative bounds of tumors due to limited
quality of the intra-operative images.

Fig. 7. Preoperative T1 MRIs (inferior view) showing tumor location in the cases analysed in this study.
White lines indicate the tumor segmentations. a) Case 1, b) Case 2, c) Case 3, d) Case 4, and e) Case 5

Table 2. Summary of the patient-specific brain meshes built in this study

Case 1 Case 2 Case 3 Case 4 Case 5
Number of hexahedral elements 14447 10258 10127 9032 8944
Number of tetrahedral elements 13563 20316 23275 23688 21160
Number of nodes 18806 15433 15804 14732 14069
Number of degrees of freedom 55452 45315 46896 43794 42018

d)                                              e)

a)                                              b)                                                 c)
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Fig. 8. Definition of ventricles’ bounds. Vertices P1 and P2
define a cuboidal box that bounds the ventricles. The box faces

are formed by planes perpendicular to X, Y and Z axes

The computation times on a PC (Intel E6850 dual
core 3.00 GHz processor, 4 GB of internal memory,
and Windows XP operating system) varied from 30 s
(Case 1) to 38 s (Case 5). Following our earlier work

[82] on the application of Graphics Processing Units
(GPUs) to scientific computations, we also implemented
our algorithms using the NVIDIA Compute Unified
Device Architecture (CUDA). Non-trivial details of this
implementation are given in [83]. For the NVIDIA
CUDA implementation of our algorithms, the computa-
tion times were shorter than 4 s for all the craniotomy
cases analyzed in this study. The maximum errors when
predicting the intraoperative bounds of the ventricles
were 1.6 mm in X (lateral) direction, 1.6 mm in Y (i.e.
anterior–posterior) direction and 2.2 mm in Z (inferior–
superior) direction (table 3). These errors compare well
with the voxel size (0.86 × 0.86 × 2.5 mm3) of the in-
traoperative images. A qualitative comparison of the
contours of ventricles and tumor (predicted by the finite
element brain models developed in this study) with the
intraoperative images shows a remarkably good agree-
ment (figure 9).

a) b) c)

d) e)

Fig. 9. The registered (i.e. deformed using the calculated deformation field) preoperative contours
of ventricles and tumor are imposed on the intraoperative images. The images were cropped and enlarged.

a) Case 1, b) Case 2, c) Case 3, d) Case 4, and e) Case 5

Table 3. Error in predicting the X, Y, and Z coordinates (in millimeters) of vertices P1 and P2
defining the bounds of the ventricles in the intraoperative MRIs (see figure 8). The directions

of the X, Y, and Z axes are as in figure 8. The numbers in bold font indicate the maximum errors

X coordinate error (mm) Y coordinate error (mm) Z coordinate error (mm)

P1 P2 P1 P2 P1 P2

Case 1 0.3 0.2 0.7 1.3 0.7 0.2
Case 2 0.0 0.5 1.2 0.5 0.6 0.5
Case 3 1.6 0.4 0.6 1.6 2.2 0.1
Case 4 0.5 0.0 0.5 0.4 0.1 0.7
Case 5 0.1 0.4 0.5 1.5 1.1 0.4
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In table 3, the computation results are presented to
one decimal place as it has been reported in the lit-
erature [7] that this is approximately the accuracy of
finite element computations using the type of finite
element algorithms applied in this study.

State-of-the-art image analysis methods, such as
those based on optical flow [84], [85], mutual infor-
mation-based similarity [86], [87], entropy-based
alignment [88], and block matching [89], [90], work
perfectly well when the differences between images to
be co-registered are not too large. It can be expected
that the non-linear biomechanics-based model sup-
plemented by appropriately chosen image analysis
methods would provide a reliable method for brain
image registration in the clinical setting.

4. Conclusions

Computational mechanics has led to a better un-
derstanding and greater advances in modern science
and technology [1]. It is now in a position to make
a similar impact in medicine. We have discussed
modelling approaches to two applications of clinical
relevance: surgical simulation and neuroimage regis-
tration. Mechanical terms such as displacements and
forces can be used to characterise these problems, and
therefore the standard methods of continuum me-
chanics can be applied. Moreover, similar methods
may be used for modelling the development of struc-
tural diseases of the brain [42], [91]–[93].

Because of the large displacements involved (from
ca 10 to 20 mm in the case of a brain shift) and the
strongly non-linear mechanical response of tissue to
external loading, we use non-linear finite element
procedures for the numerical solution of the models
proposed.

The complicated mechanical behaviour of the brain
tissue, i.e. non-linear stress–strain and stress–strain
rate relationships and much lower stiffness in exten-
sion than in compression, requires sophisticated con-
stitutive models for some applications. The selection
of the constitutive model for surgical simulation
problems is made based on the characteristic strain
rate of the process to be modelled and, to a certain
extent, on computational efficiency considerations.
Fortunately, for intra-operative image registration, the
precise knowledge of patient-specific mechanical
properties of brain tissue is not required [41].

A number of challenges still prevent the wide ac-
ceptance of Computer-Integrated Surgery systems
based on computational biomechanical models. As we

deal with individual patients, methods to produce
patient-specific computational grids quickly and relia-
bly must be improved. Substantial progress in auto-
matic meshing methods is required, while meshless
methods may provide an alternative solution. Com-
putational efficiency is an important issue, as intra-
operative applications, requiring reliable results within
approximately 40 seconds, are most appealing. The
use of the Total Lagrangian Formulation of the finite
element method [76], [79], where all field variables
are related to the original (known) configuration of the
system and therefore most spatial derivatives can be
calculated before the simulation commences, during
the pre-processing stage, offers such a possibility.
Implementation of these algorithms in graphics proc-
essing units leads to computation times well within
the limits required for intra-operative applications.
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