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Optimization solutions depend
on the choice of coordinate system

ADAM CZAPLICKI

Department of Biomechanics, The Academy of Physical Education in Warsaw, External Faculty of Physical Education in Biała Podlaska,
ul. Akademicka 2, 21-500 Biała Podlaska, Poland, e-mail: czaplicki@poczta.onet.pl

The assumption that optimization results depend on coordinate system selected to describe a biomechanical model is tested by com-
paring two solutions obtained with generalized and natural coordinate systems. A 5-degrees of freedom planar musculoskeletal model
actuated by 9 Hill-type musculotendon units was created to simulate lifting a leg up. Each individual muscle force was discretized into a
set of independent design variables, and an inverse dynamic parameter optimization method was used in the computations. The optimal
time characteristics of the predicted muscle forces for both solutions are presented. Some remarks concerning the efficiency of natural
coordinates for solving optimal control problems are also included.
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1. Introduction

The process of optimization depends upon a num-
ber of factors. The most important ones, well-
documented in the literature on the subject (e.g.
[11]), indicate the proper choice of the merit func-
tion, the algorithm applied in the calculations, or the
quality of the input data. The results obtained in [6]
also emphasize the significant influence of the coor-
dinate system selection on static optimization solu-
tions. It can be then assumed that any kind of optimi-
zation, including the parameter one, is affected by
the latter factor.

There are two basic kinds of parameter optimi-
zation. The first approach is well-known in biome-
chanics [2], [3], [12]. The basic idea starts from the
assumption that any control history can be param-
eterized by means of a set of nodal points, from
which the control function is reconstructed by linear
interpolation. The system of differential equations
is integrated forwards in time, and the nodal points
are the variables optimized. The drawback of this

procedure is that it may be too time-consuming for
multibody biomechanical systems [2].

The other approach is called the inverse dynamic
parameter optimization. Both state or control variables
can be discretized and optimized [1], [10], whereas
remaining variables are computed through inverse
dynamics. A significant advantage of this formulation
is that it does not require the system of differential
equations to be numerically integrated and thus makes
such an approach computationally efficient.

The aim of this work was to examine whether the
inverse dynamics parameter optimization used for
a biomechanical application depends on the choice of
the coordinate system. Two coordinate systems were
chosen to describe the biomechanical model. The first
one is represented by five independent generalized
coordinates, whereas the other one by eight dependent
natural coordinates.

The other goal of the work was to check the use-
fulness of natural coordinate system for solving
a parameter optimization problem.

A simple and predictable motor task like lifting
a leg up is analysed.

______________________________
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2. Biomechanical model

The biomechanical model of the human leg is
composed of three rigid bodies. The unconstrained
model has 5 degrees of freedom. Its configuration is
described by five generalized coordinates (xH, yH, ϕ1,
ϕ2, ϕ3) (figure 1, left).

Eight coordinates (x1, y1, ..., x4, y4), which are the
Cartesian coordinates of the basic points located at the
joints and at the metatarsal part of the foot, are selected
as natural coordinates (figure 1, right). The muscle net
torques are represented by the pairs of the forces Fi and
–Fi acting on the beginnings and ends (Pi) of the unit
vectors ui oriented perpendicularly to the segment i [8].
The gravitational force exerted on each segment is dis-
tributed between its basic points Pi and Pi+1. The posi-
tions of the leg in figure 1 indicate the range of motion
of the analysed motor task. Both models share the same
muscle apparatus consisting of nine muscles.

The dynamic equations of the motion of the model
described in natural coordinates can be given by

λqCττqBfqM )())(( pas
TT −++=&& , (1)

where M is the 8×8 mass matrix of the system (con-
stant coefficients in kg), q is the 8×1 vector of natu-
ral coordinates, f is the vector of external loads con-
taining the gravitational forces, BT is the 8×3 matrix
of control distribution (nonzero entries in m–1), τ is
the vector of the net muscle torques at the joints, τpas

denotes the torques exerted by the passive joint
structures (ligaments), C is the 5×8 Jacobian matrix
of the constraints imposed on the hip joint trajectory
and associated with constant distance conditions
between two successive basic points (with non-
constant coefficients in m), and λ is the 5×1 vector of
constraint reactions (in N) in the hip joint and in the
Lagrange multipliers (in N/m). The explicit form of

equation (1) is reported elsewhere [6], whereas
equation (1) expressed in generalized coordinates
can be found in [4].

Throughout the optimization process the net mus-
cle torques τ in equation (1) are replaced by individual
muscle forces
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where i
mF  (in N ) (i = 1, ..., 9) are the forces of ILPSO,

RF, VAS, GL, HAMS, BFSH, GAS, SOL and TA,
and i

A
i
K

i
H rrr ,,  are the arms (in meters) of these forces

with respect to the hip, knee and ankle joints.
The muscle forces were calculated by means of

a 4-element Hill-type muscle model. The physiologi-
cal and geometrical as well as elastic and damping
properties of the muscles were estimated according to
[7], [9], [13].
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Fig. 1. Biomechanical model defined in generalized and natural coordinate systems
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3. Optimization

As a novel approach, the inverse dynamics pa-
rameter optimization executed within the natural co-
ordinates’ domain is briefly explained in this section.

First, a set of n = 61 nodal points of the analysed
motor task uniformly distributed over the time is de-
fined. Second, the parameterization of the constraint
and muscle forces is performed resulting in the vector
of design variables

TT
n
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where
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is the 14×1 vector containing the values of design
variables at the time step tj ( j = 1, ..., n). Inserting
equation (2) into (1) yields a system of linear equa-
tions in the components of q j
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where Aj is the 8×14 matrix containing the arms of the
muscle forces at the time instant tj. Finally, the inverse
dynamics parameter optimization scheme can be
written as
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where F0 is a cost function, A is the 488×854 block
diagonal matrix of linear constraints, aij (i =1, ..., 9)
(uij when the activation dynamics is included) are the
lower and upper bounds imposed on the muscle acti-

vations/excitations, and
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The cost function, taken from the work [5], ensures
the physiologically relevant distribution of muscle
forces, minimizing mechanical energy expenditure. The
muscle activations/excitations were estimated using the
inversion of the contraction (contraction and activation)
dynamics as described in the work [1].

4. Results

A twenty-two-year-old male, with the height of
180 cm and the body mass of 70 kg, lifted up his right
leg several times. The recorded activity regarded as
being the most appropriate was subjected to the analy-
sis. The data acquisition process as well as handling
the raw kinematic data were similar to those described
elsewhere [4].

A sequential programming method (SQP) was used
to solve optimization problems. The computations were
performed with a Pentium IV 3.1 GHz PC. The initial
and final conditions were the same for both models.
Some technical aspects associated with the computa-
tions are specified in the table. The initial guess “0”
means that all the components of qopt were set at zero,
whereas SO denotes the static optimization solution
obtained with starting values set at zero as well.

The solution in generalized coordinates was
achieved faster and with the lower value of the cost
function. When the contraction dynamics is only im-
plemented, the differences in the computation time in
both coordinate sets seem to be sensitive to the initial
guess. The computation lasts for a drastically longer
time when the activation dynamics is included, even if
a simple relation between the activation a and the
excitation u [14] is presumed.

The patterns of muscle forces, computed from the
same initial guess (the table, col. 4) for reasons of
comparison, are shown in figure 2. Having similar
shapes, these characteristics reveal the significant
differences between both solutions. The gluteus, vasti
and soleus forces have been predicted in natural

Table. Computation time and selected attributes of optimal solutions

Coordinate
systems

No.
of optimized

variables

Cost
function

[J]

Comp. time
(contr. dynamics)

Init. guess “0”

Comp. time
(contr. dynamics)

Init. guess SO

Comp. time
(act. dynamics)
Init. guess SO

Generalized 671 514.76 26.79 min 15.95 min 2.03 h
Natural 854 575.96 28.05 min 44.88 min 8.43 h
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coordinate system only. It is evident that the solutions
obtained depend on the coordinates chosen to describe
the biomechanical model. This seemingly confusing
result can be explained by the fact that the searching
spaces of both models differ in dimension, and a se-
quential programming method used to solve the opti-
mization problem does not guarantee a global mini-
mum. Thus the differences between solutions may
originate from the numerical procedures used for the
computations.

All the force estimates for the iliopsoas muscle as
one of the main contributors to the movement under
analysis are presented in figure 3. It is clearly visible
that the static (the thin black line) and inverse dy-
namics parameter optimization (the thick black and
grey lines) do not provide the same solutions. A high
computational burden associated with the use of the
activation dynamics is not justified by the quality of
the results obtained because they closely match those
achieved just through the contraction dynamics.

5. Conclusions

Inverse dynamic parameter optimization solutions,
as static optimization solutions, depend on the coordi-
nate sets used to describe the configuration of the
biomechanical model. The differences that occur seem
to arise from the numerical background of the simula-
tions. Thus a researcher should take into consideration

the fact that the choice of dependent or independent
coordinates, usually carried out at the beginning of the
modelling process, may influence the final results.

Static and inverse dynamic parameter optimization
solutions for the lifting of the leg up are not equiva-
lent. This observation does not match gait analysis
results, where static and dynamic optimization solu-
tions are practically equivalent.

A large number of muscle forces predicted in natu-
ral coordinate system are important from the physio-
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Fig. 2. Optimal muscle forces predicted in natural and generalized coordinate systems

0 0.2 0.4 0.6 0.8 1 1.2
0

200

400

600

800
ILPSO - g.c.

Time [s]

s.opt.
c.dyn.
a.dyn.

0 0.2 0.4 0.6 0.8 1 1.2
0

200

400

600

800

1000
ILPSO - n.c.

Time [s]

Fo
rc

e 
[N

]

s.opt.
c.dyn.
a.dyn.

Fig. 3. Iliopsoas forces obtained for different optimization procedures

Fo
rc

e 
[N

]
Fo

rc
e 

[N
]

Fo
rc

e 
[N

]
Fo

rc
e 

[N
]

Fo
rc

e 
[N

]



Optimization solutions depend on the choice of coordinate system 79

logical standpoint. The computations in such an envi-
ronment, although time-consuming, provide a useful
framework for optimization methods.

In recent years, a growing complexity of musculo-
skeletal models in biomechanics can be observed. The
results obtained, after the activation dynamics was
implemented, show that sophisticated models do not
necessarily offer better solutions.

Acknowledgements

This work was supported by the Academy of Physical Educa-
tion, grant BW III 11.

References

[1] ACKERMANN M., SCHIEHLEN W., Physiological methods to
solve the force-sharing problem in biomechanics, Multibody
Dynamics 2007, ECCOMAS Thematic Conference, Bottasso
C.I, Masarati P., Trainelli L.(eds.), Milan, 2007.

[2] ANDERSON F.C., PANDY M.G., A dynamic optimization solution
for vertical jumping in three dimensions, Computer Methods in
Biomechanics and Biomedical Engineering, 1999, 3, 201–231.

[3] ANDERSON F.C., PANDY M.G., Static and dynamic optimiza-
tion solutions for gait are practically equivalent, Journal of
Biomechanics, 2001, 34, 153–161.

[4] BLAJER W., CZAPLICKI A., Contact modeling and identifica-
tion of planar somersaults on the trampoline, Multibody Sys-
tem Dynamics, 2003, 10, 289–312.

[5] CHOW C.K., JACOBSON D., Studies of human locomotion via
optimal programming, Mathematical Biosciences, 1971, 10,
239–306.

[6] CZAPLICKI A., Are natural coordinates a useful tool in mod-
eling planar biomechanical linkages? Journal of Biome-
chanics, 2007, 40, 2307–2312.

[7] DAVY D.T., AUDU M.L., A dynamic optimization technique
for prediction muscle forces in the swing phase of gait, Jour-
nal of Biomechanics, 1987, 20, 187–201.

[8] GARCIA de JALÓN J., BAYO E., Kinematic and dynamic
simulation of multibody systems: The real-time challenge,
Springer, New York, 1993.

[9] HATZE H., The complete optimization of the human motion,
Mathematical Biosciences, 1976, 28, 99–135.

[10] LOEBOUF F., BESSONNET G., SEGUIN P., LACOUTURE P.,
Energetic versus sthenic optimality criteria for gymnastic
movement synthesis, Multibody System Dynamics, 2006, 16,
213–236.

[11] MAROŃSKI R., Methods of calculus of variation in biome-
chanics (in Polish), Publishing House of the Warsaw Univer-
sity of Technology, Warsaw, 1999.

[12] PANDY M.G., ANDERSON F.C., HULL D.G., A parameter
optimization approach for the optimal control of large-scale
musculoskeletal systems, Transactions of the ASME, Journal
of Biomechanical Engineering, 1992, 114, 450–460.

[13] YAMAGUCHI G.T., SAWA A.G.U., MORAN D.W., FESSLER
M.J., WINTERS, J.M., A survey of human musculotendon ac-
tuator parameters [in:] Winters J.M., Woo S.L.-Y. (eds.),
Multiple Muscle Systems: Biomechanics and Movement Or-
ganization, Springer, New York, 1990, 718–749.

[14] ZAJAC F.E., Muscle and tendon: properties, models, scaling, and
application to biomechanics and motor control, CRC Critical
Reviews in Biomedical Engineering, 1989, 17, 359–411.


