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Optimal strategy in chemotherapy for
a Gompertzian model of cancer growth
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The problem of optimal cancer chemotherapy is reconsidered. For the assumed result of the therapy the cumulative negative toxic ef-
fect of the drug is minimized. The unknown function to be optimized is the time-dependent dose of the drug. The Gompertzian model of
cell population growth is employed. The formulated problem of the calculus of variations is solved using the method of Miele (the
method of extremization of linear integrals via Green’s theorem). The optimal solution is unique and of “bang-bang” type with one

switching point.
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1. Introduction

The problem of cancer chemotherapy may be
formulated in calculus of variations (optimal con-
trol). The cell population growth is represented by
one state equation of Malthusian type for the sim-
plest model (SWIERNIAK and DUDA [8], SWIERNIAK
et al. [9], MARONSKI [3], [4], [5]. The physical inter-
pretation of this model is clear (FORYS [1]). If the
drug is not supplied the number of cancer cells in-
creases exponentially, therefore the model is suitable
only in the early stage of growing process because
each population has a saturation tendency. This
weakness does not appear for the Gompertzian
model of cell population growth. The model fits well
with measuring data (NORTON [7]), but its physical
interpretation is not quite clear.

In the paper, the problem formulated by SWIERNIAK
and DUDA [8] is reconsidered. A simple method of the
problem solution is proposed — the method of MIELE
[6]. It has been originally developed for aerospace sys-
tems and then successfully applied to many problems in
the biomechanics of human movement in order to de-
sign optimal strategies for downhill skiing, running,
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swimming and cycling (MARONSKI [2]). This approach
may be used to find some optimal solutions of the
problems occurring in medicine. The problem consid-
ered here is exemplified by human breast cancer che-
motherapy.

2. Formulation of the problem

The basic assumptions of the model:

¢ Only one kind of the cells is considered. The
population is homogeneous.

o The maximum number N, of cells in population
is limited. It cannot increase to infinity even if the drug
is not supplied. This is the basic difference between this
model and the Malthusian (exponential) one.

e The numbers of cancer cells at the beginning
(No) and at the end (Ny) of the therapy are given. The
last number represents the goal of the therapy to be
achieved.

o The time T of the therapy is also known.

The Gompertzian model of cell population growth
under control is represented by (SWIERNIAK and
DUDA [8], equation (34))



82 R. MARONSKI

dN N,
T =gNln=mx 24y N, 1
i N (1)

where: N is the number of cancer cells at the instant of
the time ¢, Ny 1s the limiting size (population capac-
ity), u(?) is the control function that should be com-
puted, g and a are the constants given. If the cell
growth is beyond control [u(f) = 0], this model is
a version of the logistic model or the Verhulstian
model that is well-known and often applied in biology
(FORYS [1]).

The performance index to be minimized is in the
form (SWIERNIAK and DUDA [8], equation (2))

J = j u(t) dt — MIN. )
0

The symbol u(f) stands for the control function
satisfying inequality constraints

0<u(t)<l, 3)

where [1 — u(f)] represents the probability of cell sur-
vival after applying a cytostatic. For u(f) = 0, a medicine
is not given, for u(¢) = 1 the maximum medicine dose
is given. The minimized performance index (2) repre-
sents the toxic effect of a medicine cumulated in pa-
tient’s organism during the therapy. The differential
equation (1) modelling the growth of cancer cell
population should be completed with the boundary
conditions representing the numbers of cancer cells at
the beginning and at the end of the therapy

N0)=N,, N(T)=N;,. 4
The numbers N,y and Nrare given.

The problem is formulated as follows: minimize
the toxic effect of the therapy (2) whose aim is to stop
cancer cell proliferative growth described by equation
(1) with the initial condition (4a), the assumed goal of
the therapy (4b), and the inequality constraints (3)
imposed on the medicine dosage.

The formulation of this problem differs slightly
from that given by SWIERNIAK and DUDA [8], where
the performance index

J=rN(T)+ j u(t) dt —MIN (5)
0

is minimized and the final condition in the form of
(4b) is not considered. In the formulation presented in
this paper, the difficulty connected with a proper se-
lection of the weighting coefficient » in equation (5)
disappears.

3. Solution of the problem

The problem may be solved using the method of
Miele in (¢, N)-plane (MIELE [6]). It is necessary to
depict the so-called admissible domain integrating
forward and backward equation (1) for u(f) = 0 and
u(t) = 1, respectively. For one set of the model pa-
rameters four curves border this domain. Next,
the performance index (2) should be transformed into
a line integral using (1) in order to eliminate the
control u(?):

(T,N7)
[ ot.N) di + y(e,N) an (6)

(0,Ny)

J =

where

vt N)=———— . (7)
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The character of the optimum solution depends on
the behaviour of the so-called fundamental function
(MIELE [6])

o)=Y 00 _ & g (8)
ot ON 2aN

The fundamental function @ is greater than zero
within the admissible domain. From the method it
follows that the optimum path is on the border of this
domain on the left-hand side as one moves from the
point (0, Ny) to the point (7, N7). This means that we
deal with a two-stage therapy: in the first stage, the
drug is not given [u(¢) = 0], and in the second one, the
maximum dose is given [u(f) = 1]. The singular solu-
tion does not appear because w # 0 everywhere within
the admissible domain.

4. Example

A human breast cancer growth is considered as an
example. We assume that at the end of the therapy
the number of cancer cells is the same as at the be-
ginning:

Ny =Ny=7.2-10",

This is equivalent to 72 cm’ of densely packed tu-
mour cells (NORTON [7]) and above the clinical diag-
nosis ranging from 1-10° to 5-10° cells. The tumour is
assumed to be lethal at 1-10" cells (1 dm®). Other data
according to NORTON [7] are as follows:
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Niax = 3.1:10" (3.1 dm’);

2=0.055; T=15 months.

The author of this paper has not found the data re-
ferring to the parameter 2a that represents the effi-
ciency of killing agent, therefore its three different
values are considered, 2a = 0.3, 0.4 and 0.5. The ad-
missible domains for these parameters are depicted in
figure. The optimum paths are on the left-hand side
as one moves from the initial point to the final point
— upper curves. This means that the drug should not
be given at the beginning of the therapy [u(¢) = 0], and
then the maximum dose should be administered
[u(r) = 1]. Based on the reasoning employed it can be
inferred that this property does not depend on the pa-
rameters of the Gompertzian model.
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toxic effect of the therapy can be minimized. The
method of Miele shows that the optimal solution for
that model is unique and on the border of the admissi-
ble domain. The optimal control function is of “bang-
bang” type with one switching point. The singular
controllers in the sense of classical calculus of varia-
tions, when the Euler-Lagrange equation degenerates
into an algebraic equation, do not appear. The results
suggest that the maximum dose of the killing agent
should be administered for a relatively large number
of cancer cells at the end of the therapy which is not in
accordance with clinical experience, but is compatible
with the results of the Gompertzian model obtained by
SWIERNIAK and DUDA [8] using the Pontryagin
maximum principle. However, the reasoning based on
the method of Miele seems to be much simpler.
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Strategies minimizing the performance index at assumed boundary values of the cancer cell number and different values
of the parameter 2a representing the effectiveness of the killing agent (upper curves). Bottom curves maximize the performance index

Performance indices at different values of the parameter 2a
representing the effectiveness of the killing agent

2a Jmin Jmax
0.3 8.9 11.5
0.4 6.2 9.25
0.5 4.8 7.75

5. Summary

In the paper, the problem of optimal cancer che-
motherapy is reconsidered based on the Gompertzian
model of cancer proliferative growth. The negative
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