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The modelling of heating a tissue subjected to
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The boundary element method (BEM) is used to solve the coupled problem connected with the biological tissue heating. The tissue
treated as a non-homogeneous domain (healthy tissue and tumor region) is subjected to external electromagnetic field. The thermal effect is
produced by electrodes that touches the skin surface. External electromagnetic field generates the internal temperature field, which can be
modelled by using the volumetric internal heat sources in the tissue domain (this source function constitutes one of components of the Pennes
equation). In the paper, both BEM application to coupled bioheat transfer problems and numerical results of computations are theoretically
considered. The successive examples show the different input data determining the electromagnetic field parameters.
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1. Introduction

Hyperthermia occurs when the body produces or
absorbs more heat than it can dissipate. This is usually
due to excessive exposure to heat. Hyperthermia can
also be produced artificially by medical devices and it
may be used as a therapeutic method to bring about an
artificial rise in temperature in certain types of cancer
tissues, such as skin cancer [1]. Up to now, various
heating methods allowing hyperthermia to be pro-
duced, such as resistive heating with external elec-
trodes [1]–[3], microwaves [4], [5], ultrasound [6] and
lasers [7], have been used. It has been well established
that the temperature above 42 °C causes necrosis of
living cells. The heat has to be applied directly to the
tumor in order to prevent the damage to healthy tissue
surrounding the tumor. The knowledge of the entire
temperature field in the treatment region allows us to
control the tumor heating.

The paper deals with the modelling of biological
tissue heating by external electromagnetic field. To
analyse the problem a simplified 2D mathematical
model based on the Pennes equation supplemented
with an equation determining the electric field pro-
duced by the external electrodes is built; at the same
time different values of electric field parameters have
been taken into account. The model has been sub-
jected to the numerical investigations using the
boundary element method. It should be pointed out
that the temperature differences and temperature gra-
dients in the domain considered are rather small. The
BEM guarantees a high accurracy of numerical simu-
lation (due to a good approximation of boundary con-
ditions), but it is not popular as a tool for solving the
bioheat transfer problems. The algorithm, numerical
procedures in the case of non-homogeneous domain,
and also the adequate computer program have been
designed by the authors of this paper. Our main ob-
jective was to develop the boundary element method
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that can be applied to coupled problems connected
with bioheat transfer modelling.

2. Governing equations

In figure 1, a typical radio-frequency (RF) hyper-
thermia system is shown [2]. The mathematical model
of the process analyzed consists of two parts [2], [3].
In the electromagnetic part, the electric field distribu-
tion is obtained based on the Laplace equation. The
thermal part is connected with the bioheat transfer
equation to obtain a temperature distribution. In the
bioheat transfer equation, an additional source term
associated with the heat generation caused by electric
field distribution appears.

Fig. 1. Hyperthermia system

Because the wavelength of the RF current in tis-
sues is much greater compared to the depth of a hu-
man body, the quasistatic electric field approximation
can be applied. The quasistatic electric field is irrota-
tional, so the electric potential can be introduced. The
electric potential ϕ1(x, y) inside the healthy tissue Ω1

is described by the Laplace equation

0)],(),([:),( 111 =∇∈ yxyxΩyx ϕε , (1)

where ε1(x, y) [C2/(Nm2)] is the dielectric permittivity
of tissue.

The electric potential ϕ2(x, y) inside the tumor Ω 2 is
described by a similar equation

0)],(),([:),( 222 =∇∈ yxyxΩyx ϕε , (2)

where ε 2(x, y) is the dielectric permittivity of tumor.
At the interface Γc between the tumor and healthy

tissue (figure 2) the ideal electric contact is assumed
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On the external surface of tissue being in contact
with the electrodes the following conditions are ac-
cepted

,),(:),(

,),(:),(

22

11

UyxΓyx

UyxΓyx

−=∈

=∈

ϕ

ϕ
(4)

where U [V] is the electric potential of the electrode
relative to the ground.

On the remaining external boundary of the tissue,
the ideal electric isolation is assumed:
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Fig. 2. Domain of tissue with a tumor

The electric field inside the tissue is described by the
following equation
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Heat generation Qe [W/m3 ] due to the electromag-
netic power dissipated in healthy tissue (e = 1) and tumor
region (e = 2) depends on the conductivity σe [S/m] and
the electric field E [2]
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The temperature field in the healthy tissue and the
tumor region is described by the system of the Pennes
equations [2], [8]–[10]
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where e = 1 and e = 2 correspond to the healthy tis-
sue and tumor region, respectively, Te denotes the
temperature, λe [W/(mK)] is the thermal conductiv-
ity, GBe [1/s] is the perfusion rate, cB [J/(m3K)] is the
volumetric specific heat of blood, TB is the tempera-
ture of blood supplying arteries which is treated as
a constant, Qmete [W/m3 ] is the metabolic heat source.

At the interface Γc between the tumor and healthy
tissue an ideal contact is accepted
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On the upper and lower surfaces of healthy tissue
domain (skin surface) the convection condition is
assumed [2]
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where α w [W/(m2K)] is the coefficient of heat transfer
between the skin surface and the cooling water, Tw is
the cooling water temperature. At a stage of numerical
simulation the Dirichlet condition in place of (10) can
also be considered. If α w → ∞ then T1(x, y) → Tw. So,
introducing into the set of input data the value α w that
equals, e.g., 1012, one arrives at the solution corre-
sponding to the Dirichlet boundary condition. Sum-
ming up, using the same computer program, the dif-
ferent types of boundary conditions on skin surface
[11] can be considered. On the boundaries Γ7, Γ8 the
adiabatic condition –λ∂T1/∂n = 0 can be taken into
account. This condition results from the consideration
that in the positions far from the center of the domain,
the temperature field is almost not affected by the
external heating [2].

3. Boundary element method

In order to solve the equations describing the po-
tential of electric field and the temperature field in the

domain considered, the boundary element method has
been applied [9], [14], [15]. The boundary integral
equations corresponding to equations (1), (2) can be
expressed by:
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where (ξ, η) is the observation point, the coefficient
Be(ξ, η) depends on the location of the source point
(ξ, η) and ψe(x, y) = –εe∂ϕe(x, y)/∂n. In the domain Ω 1,
the boundary Γ corresponds to the external and inter-
nal boundaries of healthy tissue; in the domain Ω 2, the
boundary Γ is denoted by Γc as shown in figure 2.
Fundamental solution of the problem discussed has
the following form
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where r is the distance between the points (ξ, η) and
(x, y). Differentiating the function ),,,(* yxe ηξϕ  with
respect to the outward normal n = [cosα, cosβ ], the
function ),,,(* yxe ηξψ  is obtained
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where

βηαξ cos)(cos)( −+−= yxd . (14)

The boundaries of the domains are divided into N1
and N2 boundary elements, respectively, as shown in
figure 3.

Fig. 3. Boundary elements and nodes

For constant boundary element, it is assumed that
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and then the following approximation of equation (11)
can be obtained:

• for healthy tissue
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• for tumor region
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where
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iiH .

The boundary condition (3) on the contact surface
(healthy tissue – tumor region) written in the form of:
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is introduced into the systems of equations (16), (17).
Hence, one obtains
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and
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or using matrix convection, one arrives at









=









ϕ
ϕ1

11
1

11 ][][ cc HH
ψ
ψGG (23)

and

ϕ22
cc HψG =− . (24)

Joining together the systems of equations (23),
(24), one has
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Then, the remaining boundary conditions (4), (5)
should be introduced into the system of equations
(25). This system allows the “missing” boundary val-
ues of the functions e

j
e
j ψϕ ,  to be determined.

It should be pointed out that in order to determine
the electric field inside the tissue (equation (6)), the
partial derivatives ∂ϕe(x, y)/∂x, ∂ψe(x, y)/∂y have to be
known. One of the possibilities is making use of
equations (11) for internal nodes (ξ, η)(Be(ξ, η) = 1)
and then of the following relationships:
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Applying the previously presented discretization
of the boundaries for the subdomains, it is possible to
perform numerical calculations of partial derivatives.
These derivatives are determined at the internal nodes
shown in figure 4.

The Pennes equations (8) can be written in the
form
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The boundary integral equations corresponding to
equations (30) can be expressed as follows

,2,1,),(),,,(

),,,(),(

),,,(),(),(),(

*

*

*

=+

=

+

∫
∫

∫

edΩyxQyxT

dΓyxqyxT

dΓyxTyxqTB

e
e

Ω
e

ee

e
Γ

eee

ηξ

ηξ

ηξηξηξ

Γ

(32)

where











=

e

e

e
e

krKyxT
λλ

ηξ 0
*

π2
1),,,( (33)

and

,
π2

),,,(),,,(

1

*
*











=

∂
∂

−=

e

e

e

e

e
ee

krKk
r

d
n

yxTyxq

λλ

ηξληξ

(34)

while qe(x, y) = –λe∂Te(x, y)/∂n. In formulas (33), (34),
K0(⋅) and K1(⋅) are the modified Bessel functions of
the second kind, zero and the first order, respectively
[15].

To solve equations (32), not only the boundary of
the domains considered, but also their interior should
be discretized as shown in figure 4.

Fig. 4. Discretization of the subdomains considered

For constant boundary elements and constant internal
cells one obtains the following systems of equations

• for healthy tissue
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• for tumor region
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The systems of equations (35) are coupled with
boundary condition (9), which can be written as
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Finally one obtains
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The remaining boundary conditions should be intro-
duced into the system of equations (41). The solution
of (41) allows one to calculate the “missing” boundary
temperatures e

jT  and heat fluxes e
jq . Then the tem-

peratures at the internal nodes are calculated based on
the formulas
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• for healthy tissue (i = N + 1, N + 2, …, N + L1)
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• for tumor region (i = N + L1 + 1, N + L1 + 2, …,
N + L)
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In the paper, the external boundary of the tissue
has been divided into 60 constant boundary elements,
the interface Γc of the tumor and the tissue has been
divided into 16 boundary elements. To solve the Pen-
nes equation in the interiors of Ω1 and Ω2, the respec-
tive nodes (internal cells) L1 = 184 and L2 = 16 have
been distinguished.

4. Results of computations

The rectangular domain of the dimensions of
0.08 m × 0.04 m has been considered. The heating
area is described as {0.032 m ≤ x ≤ 0.048 m, y = 0},
{0.032 m ≤ x ≤ 0.048 m, y = 0.04 m}, the tumor
region corresponds to Ω2 = {0.032 m ≤ x ≤ 0.048 m,
0.016 m ≤ y ≤ 0.032 m} as shown in figure 2.

At first, the temperature distribution in the tissue
with tumor not exposed to electric field has been calcu-
lated. For healthy tissue the following parameters have
been assumed: thermal conductivity λ1 = 0.5 [W/(mK)],
perfusion rate GB1 = 0.0005 [1/s], metabolic heat source
Qm1 = 4200 [W/m3], blood temperature TB = 37 °C,
volumetric specific heat of blood cB = 4.2 [MJ/(m3K)]
[2]. It has been revealed that the presence of malignant
tumor often leads to very different blood perfusion and

abnormally high capacity of metabolic heat source in the
tumor region [2], [8], [9]. The following parameters are
thus given for a highly vascularized tumor diagnosed in
the skin tissue: GB2 = 0.002 [1/s], Qm2 = 42000 [W/m3],
λ2 = 0.6 [W/(mK)] [2]. Two variants of boundary condi-
tions on skin surface have been taken into account. In the
first variant the boundary temperature T = 32.5 °C has
been assumed [12], [13] (figure 5), in the second one the
convection boundary condition (equation (12): α w =
45 [W/(m2K)], Tw = 20 °C) has been accepted (figure 6).
The maximum temperatures in both cases, equal to
38.22 °C and 36.78 °C, respectively, have been achieved
in the tumor region.

Fig. 5. Temperature distribution (without electromagnetic field)
for the Dirichlet boundary condition on the skin surface (T = 32.5 °C)

Fig. 6. Temperature distribution (without electromagnetic field)
for convection boundary condition on the skin surface

(αw = 45 [W/(m2K)], Tw = 20 °C)

Table. Electric properties used for the calculations (ε 0 = 8.85⋅10–12 [C2/(Nm2)])

Dielectric permittivity
[C2/(Nm2)]

Electrical conductivity
[S/m]No. Frequency

f [MHz]
ε1 ε2 σ1 σ2

Electric potential
U [V]

Maximum temperature
T [°C]

1
2
3
4

0.1 20000ε0 1.2ε1 0.192 1.2σ1

5
10
15
20

37.44
39.42
42.80
49.38

5
6
7
8

1 2000ε0 1.2ε1 0.4 1.2σ1

5
10
15
20

38.16
42.29
52.12
67.97

9
10
11
12

10 100ε0 1.2ε1 0.625 1.2σ1

5
10
15
20

38.93
46.41
63.56
88.44
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The aim of our investigations was to determine the
parameters of electromagnetic field allowing the tem-
perature in the tumor region to be higher than 42 °C.
The input data introduced into the computer program
are collected in the table [2]–[4]. In the last column, the
maximum values of temperatures obtained for succes-
sive simulations are gathered (on the skin surface the
convection condition has been assumed).

Even though the quasistatic electric field is as-
sumed, the influence of electromagnetic wave fre-
quency is also taken into account. Electric properties
of human body tissues depend on the frequency (see
the table). In figure 7, the electric field distribution
for f = 10 [MHz] and U = 10 [V] is shown, while
in figures 8, 9 the curves represent the derivatives
∂ϕ(x, y)/∂x and ∂ϕ(x, y)/∂y. Then, on the basis of
formula (7), the source function Qe can be determined
(figure 10). The temperature distribution correspond-
ing to the case discussed is shown in figure 11.

Fig. 7. Electric field distribution [V]
( f = 10 [MHz] and U = 10 [V])

Fig. 8. Derivative ∂ϕ (x, y)/∂x, [V/m]
( f = 10 [MHz] and U = 10 [V])

Fig. 9. Derivative ∂ϕ (x, y)/∂y [V/m]
( f = 10 [MHz] and U = 10 [V])

Fig. 10. Source function Qe [W/m3] due to electric field
( f = 10 [MHz] and U = 10 [V])

Fig. 11. Temperature distribution (αw = 45 [W/(m2K)],
Tw = 20 °C, f = 10 [MHz] and U = 10 [V])

Fig. 12. Temperature distribution
( f = 0.1 [MHz] and U = 15 [V])

The maximum temperature lower than 42 °C does
not always damage the tumor (rows 1, 2, 5 and 9 of
the table). The optimal temperature distribution has
been obtained for the input data collected in rows 3, 6,
10 of the table, being also represented in figures 12,
13, 11. The temperature distribution shown in figure
11 leads to the destruction of not only the tumor re-
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gion, but also a large part of healthy tissue. On the
other hand, the temperature distributions presented in
figures 12 and 13 show that only a fragment of the
tumor domain is destroyed.

Fig. 13. Temperature distribution
( f = 1 [MHz] and U = 10 [V])

The other input data from the table generate non-
acceptable temperature fields (damage to the tumor
and the healthy tissue). From the practical point of
view, the choice of proper electric field parameters is
difficult. Both the distance between the tumor and the
skin surface and its dimensions should be taken into
account. The conditions of skin surface cooling also
play an essential role during the treatment by hyper-
thermia.

5. Conclusions

The boundary element method has been applied to
solve the problem coupled with the biological tissue
heating. The simplified 2D mathematical model based
on the Pennes equation and supplemented with an
equation determining the electric field generated by
external electrodes is considered.

The potential ϕ (figure 7) has the largest gradi-
ents at the boundaries of electrodes (figures 8 and 9),
therefore the source function Qe due to electric field
reaches the maximum in this area (figure 10). The
changes of electric field parameters cause the
changes of temperature in the entire domain consid-
ered, but the possibilities of controlling the tem-
perature field (e.g. a concentration of maximum tem-
perature at the central point of tumor region) are
quite limited. Therefore, the concept of the introduc-
tion of micro/nanoparticles into the tumor region [2]
(in order to concentrate energy at the cancerous tis-
sue) seems to be very promising.

The method discussed can be applied, provided
that the tumour site and its dimensions are perfectly
well known. In such a case, the methods of numerical

simulation are very effective tool allowing a proper
choice of electric field parameters and cooling condi-
tions on a skin surface. The model presented with the
simplifications in the shape of tumor region and in the
solution of 2D problem can be extended to more com-
plex geometrical conditions.
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