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Abstract 

Purpose: Accurate biomechanical modeling is crucial for enhancing the realism of 

virtual surgical training. This study addresses the computational cost and complexity 

associated with traditional viscoelastic models by incorporating neural network 

algorithms, thereby augmenting the predictive capability of soft tissue modeling. 

Methods: To address these challenges, the present study proposes a novel 

biomechanical modeling approach. The approach establishes a relaxation prediction 

model based on the backpropagation (BP) neural network and optimizes it using an 

enhanced sparrow search algorithm (ISSA). This hybrid method leverages the dynamic 

characteristics of forceps to predict the relaxation force of soft tissues more accurately. 

The ISSA optimizes the model by integrating  chaos mapping, nonlinear inertia weight, 

and vertical-horizontal crossover strategy, which helps overcome the issue of local 

optima and boosts the predictive performance. Results: The experimental results 

demonstrated that the R² values reached 0.9956 for the pig kidney and 0.9896 for the 

pig stomach, indicating the model's exceptional precision in predicting relaxation forces. 

Conclusions: The relaxation force prediction model based on ISSA-BP neural network 

provides excellent predictive performance, offering a new and effective strategy for 

biomechanical modeling of soft tissues in virtual surgical systems. 

Keywords: Biomechanical modeling, viscoelasticity, relaxation force, neural network, 

sparrow search algorithm 

1. Introduction 

Virtual surgical systems are the most representative application of medical virtual 

reality technologies routinely used by surgeons for training, surgical planning, and 

simulation [2, 3]. Highly realistic virtual surgical environments greatly improves the 

training of lead surgeons [27]. However, due to the complexity of biomechanical 

modeling, existing virtual surgical systems mostly lack real-time and accurate force 

feedback making it difficult to be widely adopted [18]. 



 

 

Soft tissues are heterogeneous, anisotropic, nonlinear and viscoelastic [6, 16]. 

Viscoelasticity is a challenging aspect in biomechanical modeling as biological tissues 

exhibit both elastic solid and viscous fluid properties. Feng Yuanzhen [11], the pioneer 

of modern computational biomechanics, noted that almost all biological tissues exhibit 

viscoelastic behavior, only differing in their degree of elasticity or viscosity. Biological 

tissues, especially soft tissues, exhibit pronounced viscoelastic behavior because they 

are composed of materials such as elastic and collagen fibers [26]. Experiments on these 

materials have demonstrated widespread nonlinear stress-strain relationship, hysteresis 

during loading and unloading, and stress relaxation [12].  

Current mainstream biomechanical modeling methods include spring damping, 

function and finite element methods. Spring damping model simulates viscoelasticity 

of soft tissues by connecting spring dampers in series and parallel[31-33]. The method 

of function fitting is mainly based on the constitutive equation and experimental data[5, 

11, 35, 37]. The finite element method is used to compute complex mechanics problems 

by dividing the solution domain into multiple subdomains[4, 28]. However, each of 

these methods possesses inherent limitations. Spring damping models necessitate 

precise parameter tuning and often fail to accurately capture the complex nonlinear and 

time-dependent behavior of biological tissues. Function fitting methods, while simpler, 

heavily rely on accurate experimental data and may struggle with generalizing to unseen 

data. The finite element method, although powerful, entails high computational costs, 

extensive parameter calibration requirements, and challenges in fault tolerance, thereby 

limiting its real-time application in virtual surgical systems. These challenges impede 

the effectiveness of current models in providing real-time dynamic force feedback 

crucial for realistic virtual surgical environments. 

To address these challenges, this study proposes a new approach that integrates 

neural network-based learning algorithms into biomechanical modeling. For this 

purpose, the pressure relaxation behavior of pig kidney and stomach tissue was used as 

a model. Firstly, stress relaxation experiments were conducted on pig kidneys and 



 

 

stomach tissue to investigate the influence of clamping forceps motion parameters on 

the relaxation force. Subsequently, an improved sparrow search algorithm (ISSA) 

optimized back propagation (BP) neural network model was adopted to predict the 

relaxation force of the soft tissues. This approach introduced circular chaotic mapping, 

nonlinear inertia weight, and vertical-horizontal crossover into the sparrow search 

algorithm (SSA) to prevent the model from being trapped in local optimal solutions. 

This approach significantly improved the accuracy and stability of the prediction model. 

Finally, the accuracy of the model was validated through relaxation experiments. Taken 

together, the goal was to improve the universality and robustness of the model, simplify 

the parameter calculation process, avoid complex parameter fitting problems, and 

further optimize the biomechanical modeling of virtual surgical systems to improve its 

realistic experience. This would provide more reliable data support and technical 

assurance for lifelike simulation of surgical procedures. 

2. Materials and methods 

2.1 Experiment 

2.1.1 Experimental materials 

The pig kidneys and stomachs were obtained from slaughterhouses near the 

institution. The average weight of each pig was between 50-60kg with ages between 

18-22 weeks. Freshly harvested pig kidneys and stomachs were transported in a 

portable refrigerator to the laboratory as quickly as possible. Pig kidney tissues were 

cut into pieces measuring approximately 30±1mm (L) x 15±1mm (W) x 8mm±1mm 

(D). The pig stomach tissues were trimmed into pieces measuring approximately 

30±1mm (L) x 20±1mm (W) x 5mm±1mm (D) for easy compression treatment with 

the forceps. The processed samples were stored at 4 C to prevent tissue dehydration or 

other issues. 

2.1.2 Experimental equipment 

The EZ-LX Compact Table-Top Universal / Tensile Tester (Shimadzu, Japan) 

(Figure 1) was used as the platform for this experiment. It was equipped with a force 



 

 

sensor with an accuracy of 0.5% and a measurement range of 0-50N with an 

experimental indenter installed at the operating end. To study the effect of different 

clamp leaf areas on soft tissue relaxation force, three indenters with different sizes 

(Table 1), YT1, YT2, and YT3, were also used. 

 

Figure 1 Apparatus for relaxation testing 

Table 1 Types and dimensions of indenter 

Type 
Outline 

size (mm) 

Groove 

size (mm) 

Area 

(mm2) 

Tooth 

height (mm) 

Tooth 

angle (°) 

YT1 15.20*5.00 12.60*2.40 45.76 

0.2 90 YT2 12.16*4.00 10.08*1.92 29.29 

YT3 9.12*3.00 7.56*1.44 16.47 

Table 2 Experimental parameters 

Loading 

displacement 
Pig kidney: 3mm, pig stomach: 2mm 

Type YT1 YT2 YT3 

Velocity (mm/s) 0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2 

2.1.3 Experimental design 

The experimental parameters set were loading depth, initial loading speed and 

relaxation time. As the thicknesses of the processed pig kidney and stomach tissue 

samples were ~ 8mm and 5mm respectively, the loading depth for pig kidney tissues 

was set at 3mm, while for pig stomach tissues, it was set at 2mm. To simulate lifelike 



 

 

surgical procedures, the initial loading speed parameters were set at 0.5mm/s, 1mm/s, 

1.5mm/s, and 2mm/s. The indenters stayed in place for a relaxation time of 50s after 

reaching the designated loading depth. To facilitate visual analysis of factors affecting 

relaxation force, experimental groups were designed based on the controlled variable 

method (Table 2). A total of twelve experimental groups encompassing different 

relaxation times, initial loading speeds, and indenter contact areas (compression areas), 

divided into three comparative categories, were established. 

2.2  Relaxation force prediction model 

2.2.1 Improved sparrow search algorithm 

SSA is a swarm intelligence optimization algorithm based on the foraging and anti-

predator behavior of sparrows [34]. However, to obtain an ideal optimal solution poses 

a significant challenge for SSA in balancing local and global searches while avoiding 

getting trapped in local optima [21, 23, 36]. Therefore, this study introduced 

improvements to the SSA by incorporating circular chaotic mapping [17], nonlinear 

inertia weight, and vertical-horizontal crossover [24]. 

The principle of the improved sparrow search algorithm is as described: Firstly, 

population positions are initialized based on circular chaotic mapping. Traditional SSA 

generates an initial population using pseudo-random methods, which may lead to 

clustering of individuals and uneven distribution within the population [7]. By 

employing specific strategies that promote more random and uniform generation of 

initial individuals, both the quality of initial solutions and convergence speed can be 

significantly enhanced [7, 25]. We introduce an approach based on circular chaotic 

mapping to achieve a higher-quality initial population for our algorithm. Circular 

chaotic mapping is characterized by relative stability and high coverage rate of chaos 

values [1, 17]:  

 ( )1 mod sin 2 ,1
2

i i i

b
y y a y


+

 
= + − 

 
 (1) 

where 1,2, ,i n= , iy is a chaotic sequence within the range of  0 1 , a and b are two 

control parameters, and mod is the modulo function [1].  



 

 

The mapping is then used for population initialization in the following way: 

 , ( )i j ix lb ub lb y= + −   (2) 

where ,i jx  represents the value of the ith sparrow in the jth dimension, and lb and ub 

respectively represent the lower and upper bound of the search space for sparrows. 

Secondly, the discoverer's position is updated using a nonlinear inertia weight to 

enhance the SSA algorithm, which struggles with step size control. This leads to rapid 

convergence towards optimal solutions, risking local optima. To improve global 

exploration and local exploitation, we introduce an adaptive inertia weight factor   to 

control the search capability and range of discoverers, preventing them from getting 

trapped in local optima. The formula for calculating the adaptive inertia weight factor 

  is as follows: 

 max

max

exp 1
t t

t t


 +
= − 

− 
 (3) 

where 
maxt  represents the maximum number of iterations, and t represents the current 

iteration count. With an increasing number of iterations, the weight factor   underwent 

corresponding nonlinear changes. Through adaptive adjustment, the discoverer could 

accurately find the optimal solution. The improved method for determining the position 

of the discoverer is as follows [8]. 
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where t represents the current iteration value, j represents the dimension from 1 to d, 

,

t

i jX   represents the value of dimension j for sparrow i at iteration t,  2 0,1R    and 

 0.5,1.0ST   represent the alarm value and safety threshold respectively. Q is a random 

number following a normal distribution, L represents a 1*d matrix with all elements 

being 1. If 2R ST  , then the sparrow population is safe. Otherwise, some sparrows 

perceive danger, and all sparrows must quickly move to a safe area. 



 

 

In the third step to update the follower’s position, the premise taken is that 

followers will constantly monitor the producer, and if they discover that the producer 

has better food, they will compete for it. If they win, they get the food, if not, they 

continue to monitor [34]. 
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where t

pX  represents the best position occupied by the producer, t

worstX  represents the 

current worst position, and A represents a 1*d matrix where elements are randomly 

assigned 1 or -1, with ( ) 1T TA A AA+ = −   where T stands for matrix transpose . When 

i>n/2, the fitness value of the ith follower is relatively poor indicating hunger. 

Finally, the alert location is updated based on the crisscross strategy [8, 24] where 

the vertical and horizontal crossover strategy is introduced to improve the search 

method of the alerters, while maintaining convergence speed and enhancing solution 

accuracy. Horizontal crossing divides the solution space of multidimensional problems 

into semi-group hypercubes for edge searching, reducing blind spots and strengthening 

the algorithm's global optimization ability. Through vertical crossover, different 

dimensions in the population undergo crossover operations without affecting other 

dimensions, enabling dimensions that are stuck in local optima to break out. The 

algorithm is solved through competition and comparison between these two strategies.  

The position updated formula of alerters after horizontal crossing is as follows: 

 ( ) ( ), 1 , 1 , 1 , ,1t t t t t

i d i d j d i d j dMSx r x r x c x x=  + −  +  −  (6) 

 ( ) ( ), 2 , 2 , 1 , ,1t t t t t

j d j d i d j d i dMSx r x r x c x x=  + −  +  −  (7) 

where ,

t

i dMSx   and ,

t

j dMSx   are d-dimensional individuals generated by the lateral 

crossover of alerters ,

t

i dx  and ,

t

j dx . r1 and r2 are random numbers within [0,1], while c1 

and c2 are random numbers within [-1,1]. Through lateral crossover, the offspring 



 

 

individuals generated were compared with the parent individuals, and the optimal 

individual was retained based on their fitness values. 

The position update formula of the alerter after vertical crossing is as follows: 

 ( )
1 2, , ,1t t t

i d i d i dMSx r x r x=  + −   (8) 

where ,

t

i dMSx  is the offspring individual generated by vertically crossing the d1 and d2 

dimensions of individual ,

t

i dx  , and  0,1r  . As seen for horizontal crossing, the 

offspring individuals generated by vertical crossing operation competed with the parent 

generation which select individuals with higher fitness for preservation. 

2.2.2 ISSA-BP neural network 

BP neural network is an error backpropagation training algorithm for a multi-layer 

network structure, which includes input layer, hidden layer, and output layer [30]. 

Although the BP neural network has powerful nonlinear mapping capability and fault 

tolerance, its algorithm is prone to getting trapped in local optima [9]. Therefore, this 

study uses an improved SSA algorithm to optimize the weights and thresholds of the 

BP network (Figure 2). To predict the soft tissue relaxation force, we select contact area 

of the indenter, initial speed and time as input vectors; relaxation force as output data; 

and a network structure with only one hidden layer. The initial steps are (i) the 

architecture of the BP neural network was determined, and sample data collection is 

initialized, and (ii) population size, caution value, safety threshold, and number of 

iterations for the improved SSA are determined. The overall size of individuals is set 

based on preprocessed input data, where each individual consisted of weights and 

thresholds from the input layer to the hidden layer, as well as weights and thresholds 

from the hidden layer to the output layer. The following steps are then undertaken: 

Step (iii): The discoverer's position is updated by recalculation using formula (4).  

Step (iv): The follower's position is updated using formula (5).  

Step (v): The alerter's position is updated using formulas (6)-(8).  



 

 

Step (vi): The fitness of individuals is calculated in the newly generated population. If 

these requirements are met, the evolution was deemed completed; otherwise, steps 3-6 

were repeated. 

Step (vii): A BP neural network is constructed using the improved SSA optimization 

weights and thresholds and the training data are analyzed. 

 

Figure 2 Flowchart of ISSA-BP Algorithm. 

2.2.3 Validation indexes 

To evaluate the prediction error and effectiveness of the model, Root Mean Square 

Error (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE), Sum of 

Squared Errors (SSE), and Coefficient of Determination (R²) are used as evaluation 

metrics. Lower values for RMSE, MSE, MAE, and SSE indicate smaller prediction 

errors and better prediction performance, while R² reflects the correlation between 

predicted values and actual values, with larger R² values indicating better prediction 

performance. The formulas for calculating each evaluation metric are provided below. 
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where ( )L

io  represents the predicted output value, iy  represents the actual value, y  is the 

mean of iy , and N is the sample size. 

To further analyze performance differences between models, this study also 

introduces F-test and confidence interval as auxiliary analysis tools. The F-test is used 

to compare the significant differences in variance among multiple models. The formula 

for the F-test is as follows: 

 
( ) ( )

( )

2

1Yj Y k
F

SSE N k

− −
=

−


 (14) 

where Yj  represents the average value of group j, Y  represents the average value of all 

groups. N represents the total sample size, and k represents the number of groups. If the 

calculated F value is greater than the critical value, it indicates that there is a significant 

difference between at least one pair of models. The F-test helps us determine whether 

there is a statistically significant difference in the overall predictive performance of the 

models.  

The confidence interval is used to estimate the range of model prediction errors. 

The formula for a 95% confidence interval is as follows: 

 
2CI X Z

n



=    (15) 

where X  is the sample mean,   is the sample standard deviation, n is the sample size, 

and 2Z  is the critical value of the standard normal distribution (for a confidence level 

of 95%, 2 1.96Z = ). 

3. Results 



 

 

3.1 Factors influencing biological tissue relaxation force 

3.1.1 Relaxation time 

Experimental data revealed a force-time curve (Figure 3(a)) showing an initial 

drastic change in force that gradually smoothed out. A 0.02s sampling interval 

quantified this change (Figure 3(b)). The rate of force change was significant within the 

first 2s, stabilizing after 5s, indicating that the tissue reached a relatively stable relaxed 

state. 

 

Figure 3 The force-time curve changes and the rate of change in the soft tissue 

relaxation test.  

3.1.2 Initial speed 

Relaxation experiments on pig kidney and stomach tissues provided comparative 

speed data, shown in Figure 4. Figures 4(a) and 4(b) present kidney tissue relaxation 

tests with indenter YT1 at varying speeds, while Figures 4(c) and 4(d) illustrate stomach 

tissue data. From Figures 4(a) and 4(c), it is evident that the higher initial speeds 

resulted in greater initial forces, indicating that high-speed compression led to higher 

initial stress on the tissues. Regardless of the speed, the force gradually decreased and 

stabilized over time; however, under high-speed conditions, the force achieved a larger 

stable force value. Figures 4(b) and 4(d) depict variations in force with time. During 

the early stage of relaxation (0-2s), there was a pronounced decline in the rate of 

relaxation force, whereby higher initial speeds leading to more rapid rates of decline. 

After about5s, stable relaxation force rate was observed across all test conditions. 



 

 

 

Figure 4 Comparison of soft tissue relaxation forces at different speeds. 

3.1.3 Contact area 

The indenter's contact area significantly influenced relaxation force. Figure 5 

compares force-time curves across different contact areas. Figures 5(a) and 5(b) show 

kidney tissue relaxation experiments at 1.5 mm/s, while Figures 5(c) and 5(d) present 

stomach tissue results at 1.0 mm/s. With an increase in contact area, the initial force 

was greater and decreased more rapidly (Figure 5(a) and 5(c)). Over time, forces 

gradually decreased and stabilized, with larger contact areas yielding relatively higher 

stable force values. 

On the other hand, Figures 5(b) and 5(d) demonstrate the rate of change in force 

calculated with a 0.02s interval. Within the first 2s, relaxation forces rapidly decreased, 

with larger contact areas leading to faster rates of decrease. After ~5s, under various 

contact area conditions, rates of change in relaxation force stabilized at lower values, 

indicating a relatively stable tissue state. 

 

Figure 5 Comparison of soft tissue relaxation forces under different indenters. 



 

 

3.2 Analysis of relaxation force prediction model 

3.2.1. Comparison of model prediction performance 

To verify the predictive performance of the ISSA-BP model, we compared it with 

the SSA-BP and traditional BP neural network models. Figures 6(a)-6(b) demonstrate 

the performance of these three models in predicting relaxation forces. Although all three 

models showed good predictive capabilities, the ISSA-BP model exhibited superior 

prediction ability in relaxation force, as its predicted values closely matched the actual 

relaxation curves. 

 

Figure 6 Comparison of relaxation force prediction results of ISSA-BP, SSA-BP and 

traditional BP models. 

Figure 6 (c)-6(d) show the prediction errors of the three models. The ISSA-BP 

model exhibited fluctuations in prediction error during the initial stage but quickly 

converged to a value close to zero. However, the other two models consistently 

exhibited large fluctuations in prediction error, and even after relaxation stability was 

achieved, the error did not fully converge to zero. This suggested that the ISSA-BP 

model had significant superiority in predicting soft tissue relaxation force. 

3.2.2. Analysis of error evaluation indicators 

The error evaluation indexes of different models in predicting the relaxation force 

of pig kidney and pig stomach are presented in Table 3. The ISSA-BP model exhibits 

significant advantages across all error indicators (RMSE, MSE, MAE, SSE). For 

instance, the RMSE value for the ISSA-BP model in kidney tissue is 0.0068, 

significantly lower than the SSA-BP model (0.0192) and traditional BP model (0.0218). 



 

 

Similarly, the ISSA-BP model achieved an RMSE of 0.0095 for gastric relaxation, 

outperforming the SSA-BP (0.0147) and BP (0.0181) model. The R2 values for the 

ISSA-BP model were 0.9956 (pig kidney) and 0.9896 (pig stomach), indicating a strong 

agreement between predicted and actual data. 

Table 3 Evaluation indicators of different models 

  RMSE MSE MAE SSE R2 

kidney 

BP 0.0218 0.0011 0.0189 0.1194 0.9541 

SSA-BP 0.0192 0.001 0.0169 0.0924 0.9645 

ISSA-BP 0.0068 0.0003 0.0045 0.0115 0.9956 

stomach 

BP 0.0181 0.001 0.0156 0.0825 0.9624 

SSA-BP 0.0147 0.0008 0.0119 0.0543 0.9753 

ISSA-BP 0.0095 0.0005 0.0029 0.0227 0.9896 

Table 4 further validates the predictive accuracy of the ISSA-BP model through an 

F-test. The F-statistic shows that the prediction errors of the ISSA-BP model are 

significantly lower than that of the SSA-BP and BP models (pig kidney: F=185.89, 

p=0.0000; pig stomach: F=43.03, p=0.0000). The 95% confidence intervals for the 

ISSA-BP model are [-0.0012, -0.0013] (pig kidney) and [-0.0025, -0.0026] (pig 

stomach), which are significantly narrower compared to  those of the SSA-BP and BP 

models, indicating smaller errors and higher stability for this model. 

Table 4 F-test and 95% confidence interval results under three prediction models for 

pig kidney and pig stomach 

 
 Pig kidney Pig stomach 

F-test 
 F-statistic 185.89 43.0335 

p-value: 0.0000  0.0000  

Confidence 

Intervals 

BP95%CI:  [-0.0185, -0.0186] [-0.0117, -0.0118] 

SSA-BP 95% CI: [-0.0145, -0.0146] [-0.0094, -0.0095] 

ISSA-BP 95% CI  [-0.0012, -0.0013] [-0.0025, -0.0026] 

4. Discussion 

4.1 Soft tissue relaxation 



 

 

In this study, we developed the ISSA-BP neural network model for biomechanical 

modeling, which successfully predicted the relaxation behavior of soft tissues. Our 

analysis focused on key factors such as relaxation time, initial speed, and the contact 

area of the indenters, providing a deeper understanding of the mechanical behavior of 

soft tissues. Consistent with previous researches [10, 14, 15, 20, 29], we found that soft 

tissues exhibit strong time dependence during the relaxation phase (Figure 2). 

Furthermore, high-speed loading resulted in a rapid and significant force drop, 

indicating that speed affects peak forces during loading and influences the relaxation 

properties of force. These findings suggest that precise control of speed and contact area 

is crucial for optimizing surgical procedures. 

The results of our study are consistent with previous research,  indicating that both 

kidney and stomach tissues exhibit typical viscoelastic characteristics during the 

relaxation phase [14, 29]. Lu et al. [22] conducted relaxation tests on kidney tissues, 

but mainly compared soft tissue relaxation coefficients  under different storage 

conditions. Li et al. [13, 19] discovered significant regional and interlayer heterogeneity 

in the relaxation stress of pig stomachs. However, most existing research has focused 

on single-loading mode experiments [10, 14, 15, 29], whereas our study uniquely 

indicates multiple factors affecting soft tissue relaxation, such as time, loading speed, 

and the contact area. This broader approach allows for a more comprehensive 

understanding of the biomechanical properties of soft tissues and sets our study apart 

in the field. 

4.2 Model Development and Validation 

To enhance the accuracy of relaxation behavior prediction, we have developed the 

ISSA-BP neural network model that integrates crucial dynamic factors including 

contact area, initial speed, and time. The performance of this model has been further 

improved through the implementation of the ISSA optimization algorithm, resulting in 

significant enhancements in both prediction accuracy and convergence speed. When 

compared to traditional BP neural networks and SSA-BP models, the ISSA-BP model 



 

 

exhibits distinct advantages, particularly in terms of reducing error margins and 

enhancing prediction stability. The results showed that the ISSA-BP model significantly 

outperforms the SSA-BP model by reducing the RMSE by 64.6% in predicting porcine 

renal relaxation force, and by 68.8% compared to the traditional BP model. Similarly, 

the RMSE for porcine gastric relaxation force was reduced by 35.4% and 47.5%, 

respectively. 

Furthermore, the enhanced R² value provides further evidence of the ISSA-BP 

model's ability to reflect the nonlinear behavior during soft tissue relaxation, thereby 

validating the effectiveness of ISSA optimization in enhancing predictive capability. 

Moreover, the F-test result (p = 0.0000) confirms that the error variance of the ISSA-

BP model is significantly lower compared to both SSA-BP and BP models. The 

narrower and non-overlapping confidence intervals of the ISSA-BP model further 

emphasize its superiority in terms of prediction accuracy and reliability. 

4.3 Limitations 

While our study provided valuable insights, certain limitations should be noted. 

First, we analyzed factors like relaxation time, initial speed, and contact area, however 

we did not fully account for other complex influences such as tissue microstructure, 

blood flow, temperature changes, and patient physiology, which may affect predictive 

accuracy in real-life scenarios. Second, the model focused on predicting viscoelasticity 

but did not cover other biomechanical properties such as elasticity and shear modulus. 

This limitation restricts its broader applicability. Further research is needed to expand 

the model to other biomechanical fields. 

5. Conclusion 

This study successfully developed an ISSA-BP neural network for biomechanical 

modeling, which demonstrated excellent predictive capability for soft tissue relaxation, 

with good stability and accuracy. By analyzing the effects of relaxation time, initial 

speed, and contact area of the indenters, we enhanced the understanding of soft tissue 



 

 

mechanical behavior, which is essential for improving the application of virtual surgical 

systems. 

In the future, further optimization of the model parameters will be performed with 

a wider range of biological tissue types while exploring the possibility of incorporating 

deep learning techniques to achieve broader clinical applications and improvements in 

educational training tools. 

Funding: This paper is supported by National Natural Science Foundation of China 

under grant No. 52305066.   
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