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Analysis of carrying capacity of synovial unsymmetrical fluid flow in deformed, human joint gap, 
especially in hip joint, is presented. The following assumptions are taken into account: stationary, 
isothermal and incompressible synovial unsymmetrical fluid flow in time-dependent magnetic field, 
rotational motion of bone head, squeeze of synovial fluid in human joint gap, changeable synovial non-
Newtonian fluid viscosity, changeable and deformed gap height in human joint, and constant synovial 
fluid density. 

The simplified system of basic equations for pressure and synovial velocity distribution are analysed. 
Numerical and analytical formulae for capacity force taking into account conjugation fields of the 

stresses and deformations occurring in elastic cartilage and in synovial fluid obtained by virtue of theory 
of elasticity and fluid mechanics can be considered as the novely of this paper. Analytical solutions for 
the values of capacity forces allow easy numerical calculations, which may be very useful for medical 
diagnosis. 
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1. Introduction 

In the papers mentioned in references, their authors discuss not only hydrodynamic 
parameters (i.e. synovial fluid velocity components, pressure in joint gap), but also 
mechanical parameters (i.e. friction forces, friction coefficients, capacity). They use as 
a rule both analytical and numerical methods. A multitude of performed methods of 
solutions is shown in table 1. 

Papers [18], [20], [24]–[28] present an idea of friction forces in various human 
joints for various geometry of bone co-operating surfaces, for changeable joint gap 
height and for unsymmetrical flow of synovial fluid in magnetic field. In calculations 
of friction, we took into account the velocity components in circumference and 
longitudinal directions [28]. 
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Table. Short review of the papers dealing with working parameters in human joint 

Synovial fluid flow 
Hydrodynamic 

lubrication due to 
 
Paper 

Symmetrical Unsymmetrical Squeezing Rotation 

Magnetic
field 

Working parameters 
obtained analytically (a) 

and numerically (n) 

[1] yes no yes yes no pressure (a),  
friction forces (a),  
friction coefficient 

[8] yes no yes no no friction forces 
[12] not defined not defined not defined not defined yes lubrication ability  
[13] yes no no yes no pressure, capacity (a), (n) 
[15] yes no no yes no friction force, capacity 

friction coefficient (a), (n) 
[16] yes no no yes no pressure distribution 

capacity, (a), (n) 
[17] yes yes no yes no total solutions (a), (n) 
[18] yes no no yes no friction force (a) 
[19] yes yes no yes yes friction force (a) 
[20] yes yes no yes yes friction force (a) 
[21] yes yes yes yes yes pressure distribution (a) 
[22] yes yes no yes yes pressure distribution (a) 
[23] yes no yes no no pressure distribution (a) 
[24] yes no yes no no friction force (a) 
[25] no yes yes no no pressure distribution (a), 

synovial fluid velocity (a) 
[27] no yes yes no no pressure distribution (a) 

The problem of capacity force in human joint gap for changeable height of joint 
gap and for unsymmetrical flow of synovial fluid in magnetic field has not been 
discussed in papers [19]–[22], [25], [27], [28]. The novelty of the present paper is 
carrying the capacity calculations of human hip joint for deformed bone and cartilage 
surfaces lubricated due to unsymmetrical flow in curvilinear, orthogonal co-ordinates 
and in the presence of magnetic unsteady field.  

2. Main assumptions 

The following assumptions are accepted: 
• Rotational motion of the head of hip bone. 
• Squeeze motion of bone head. 
• Unsymmetrical flow of synovial fluid. 
• Stationary and isothermal flow of fluid. 
• Constant density of synovial fluid. 
• Changeable and deformed dynamic viscosity of synovial fluid. 
• Changeable gap height of human joint gap. 
• Changeable magnetic induction field. 
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Fig. 1. Capacity force Cz in human hip joint in spherical coordinates 
for hydrodynamic lubrication with rotation as an opposite reaction 

to loading force (gap in enlarged scale) 

 

Fig. 2. Capacity force Cz in human hip joint in spherical coordinates 
for hydrodynamic lubrication with squeezing as an opposite reaction 

to loading force (gap in enlarged scale) 

Y
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The changes of gap height may be generated by the geometry of a head of bone, 
namely by some irregularities caused by local deformations of cartilage and by 
roughness of bone surface. Elastohydrodynamic effects are considered in normal 
human joints because in the case of large athletic efforts occurring in some sports or in 
the case of pathological joints we may find some deformations of cartilage surface due 
to hydrodynamic pressure. We take into account a roughness of bone surface and 
pathological irregularities of bone surface caused by various diseases, because they 
contribute greatly to the gap height.  

A spherical bone surface in hip joint creates a curvilinear spherical joint gap. 
Figure 1 shows the capacity force Cz in human hip joint in the case of its 
hydrodynamic lubrication caused by rotation motion of head of bone in circumference 
or meridian direction. The values of magnetic induction field are changed periodically. 
Figure 2 shows the capacity force Cz in human hip joint in the case of hydrodynamic 
lubrication due to squeeze motion of bone head in indicated direction. The arbitrary 
rotational bone surfaces create curvilinear joint gap filled with a synovial fluid. The 
motion of bone causes the flow of synovial fluid.  

Figure 2 presents two co-operating bone surfaces during squeeze lubrication of 
human joints with synovial fluid in magnetic induction field. Two curvilinear bone 
surfaces separated by joint gap of small height come up at the uniform velocity U. 
This velocity is caused by motion of human limbs. Figure 1 shows two various co-
operating bone surfaces during their lubrication with synovial fluid due to the bone 
head rotation in magnetic induction field. Rotation motion of head of bone at an 
angular velocity ω and radius R is caused by motion of human limbs. 

Relations between dynamic viscosity of synovial fluid and shear rate are presented 
in figure 3. In figure 3a, there are tested bullock’s ankle and knee joint fluids in 
a Weissenberg rheogoniometer in the rotation mode. In figure 3b and figure 3c, 
numerical and experimental values for synovial fluid reported in [2] are presented. At 
low shear rates the values of the coefficient of apparent viscosity are constant and the 
fluid has Newtonian characteristics. At high shear rates they are shear-thinning. 
Theoretical formulation of constitutive equations for the synovial fluid is reviewed by 
LAI, KUEI and MOW [2]. The viscosity of synovial fluid of non-Newtonian properties 
was examined experimentally by DOWSON [1], MOW et al. [7] and MOW and GUILAK 
[9]. Using numerical values obtained by WIERZCHOLSKI, PYTKO [13] and 
WIERZCHOLSKI et al. [14] we arrive at approximation formulae for dynamic viscosity 
values for small and large shear rates: 
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Fig. 3. Dynamic viscosity of synovial fluid versus shear rate 
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where η∞ stands for dynamic viscosity of synovial fluid at large shear rate, ηo is 
characteristic dynamic viscosity of synovial fluid (in Pa⋅s) at small shear rate. The 
symbols A and B denoting empirical coefficients obtained by Dowson depend 
additionally on magnetic induction field. The coefficients obtained numerically 
acquire the following values: A = 1.88307 s and B = 0.00458 s2 for normal human joint 
and also A = 0.03349 s and B = 0.00131 s2 for pathological human joint if magnetic 
field does not appear. The shear rate has the following form: 

 
2

10
0 ,

∂α
∂Θ

ε
Θ VVO ≡






≅ .  (2) 

3. The Helmholtz equations 
for unsteady electromagnetic field 

Maxwell equations in unsteady electromagnetic field are as follows [10]: 

( ) 0divrotdiv,div,0div,rot,rot =
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where: D = µeE, B = Hµ, ρe – electric charge of space in synovial fluid (As/m3), 
D – electric induction vector (As/m2), E – electric intensity vector (mkgs–3A), σ – 
coefficient of electrical conductivity of synovial fluid (s3A2m–3kg), Hi – components 
of the vector H of magnetic intensity (A/m), Bi = µHi – components of the vector B of 
magnetic induction (T), Ni = χHi – components of magnetisation vector N (A/m), µ – 
coefficient of magnetic permeability of synovial fluid (mkgs–2A–2), µe – coefficient of 
electric permeability of synovial fluid (s4A2m–3kg), χ – dimensionless magnetisation 
intensity. If we deal with homogeneous and isotropic synovial fluid without electric 
charge of space and at ρe = 0, then equations (3) have the following form: 
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If the following identity 

 ( ) ( ) RRR 2divgradrotrot ∇−=  (5) 

is taken into account, then equations (4) will tend to the following partial differential 
hyperbolic equations: 
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If synovial fluid is a good insulator, i.e. σ = 0, then from (6) it will follow: 
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For synovial fluid that conducts electric current, i.e. for σ >> µe ≈ 0, from (6) we 
obtain the following Helmholtz equations: 
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4. Basic equations and sketch of solutions  

Lubrication of human hip joint will be described by means of equations of 
conservation of momentum and equation of continuity for steady motion of synovial 
fluid in thin gap and unsteady magnetic field. Moreover, we take into account the 
equilibrium equations for thin layer of cartilage. We neglect centrifugal forces because 
of small velocities and terms of the order of ReΨ, 310/ −≈≡ RεΨ , where R stands for 
the radius of curvature of bone surface, and ε for the gap height. Boundary 
simplifications of the system of conservation of momentum, continuity and Maxwell 
equations for synovial fluid in a thin gap as well as simplifications of the equations of 
elasticity for bone and cartilage (see Appendix 1) allows us to arrive at the system of 
the following form[7]–[11]:  
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where h1, h3 are the Lamé coefficients and 0 ≤ α1 ≡ ϕ ≤ 2πc1, 0 < c1 < 1, bm ≡ πR/8 
≤ α3 ≡ ϑ ≤ πR/2 ≡ bs, 0 ≤ α2 ≡ r ≤ ε. We introduce the following denotations: G ≡ 
0.5E(1 + ν)–1 stands for shear modulus, Λ ≡ Eν(1 + ν)–1(1 – 2ν)–1, K ≡ Λ + (2/3)G is 
the coefficient of cubic elastic, E is Young’s modulus of the cartilage or bone, ν – the 
Poisson ratio of the cartilage or bone, αT – thermal coefficient of linear expansion for 
cartilage or bone, T* – temperature in cartilage, δij – the Kronecker symbol equalled to 
unity for i = j and zero for i ≠ j. We assume curvilinear orthogonal α1, α2, α3 co-
ordinates in circumference, gap height and length directions, respectively. The 
symbols u1, u2, u3 denote the components of displacement vector of cartilage body in 
circumference, gap height and meridian directions, respectively. For axially 
asymmetrical flow of synovial fluid, three components v1, v2, v3 of its velocity vector 
depend on the variables α1, α2 and α3, the pressure function depends on α1, α3, and 
dynamic viscosity ηp of synovial fluid depends on α1, α2 and α3 .The gap height ε 
depends on the components ui, hence it may be a function of the variables α1 and α3. 
Stresses and deformations occurring in elastic layer of cartilage and bone and in synovial 
fluid create conjugation fields present in the system of equations (9)–(14), which has been 
obtained by virtue of the theory of elasticity and fluid mechanics. Without loss of the 
generality, for the velocity components and the pressure, the following approach has been 
introduced: 

3,2,1,......),,( )1()1(
321

)0( =++++= ivAAvvv i
k

iii ααα , 

 p = p(0)(α1, α2) + Ap(1) + ... + Akp(k) + ... .  (15) 

Symbol p denotes total pressure, symbol p(0) is the pressure for dynamic viscosity of 
synovial fluid independent of shear rate, and h1, h3 are the Lamé coefficients. For hip 
joint in spherical coordinates we have h1 ≡ R sin (α3/R). Symbol p(j) for j = 1, 2, 3, ... 
denotes the decrease or increase in the pressure and symbol v ( j) for j = 1, 2, 3, – 
velocities of synovial fluid caused by its non-Newtonian properties; in such a case 
viscosity depends on shear rate.  

For hydrodynamic lubrication by means of squeezing, we impose classical 
boundary conditions [23], [24], [25] on the velocity component of synovial fluid in 
gap height direction, which makes it possible to obtain modified Reynolds equations 
for hydrodynamic pressure function p(α1, α3) in the following form [10],[11]: 
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where 0 < α1 ≤ 2π,  0 ≤ α3 ≤ Rπc3, 0 ≤ α2 ≡ r ≤ ε, c3 ∈ [0, 1/27] and 
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 Mi ≡ (N ∇ )Bi + 0.5 rot(N × B)i . p = p(0) + Ap(1) + O(A2).  (18) 

In equations (16) and (17), the unknown functions p(1) and the term A p(1) occur. 
These functions describe the changes of pressure caused by the decrease in dynamic 
viscosity of synovial fluid due to the increase in the shear rate. 

We impose a classical boundary condition [17], [18], [19], [20] on the velocity 
component of synovial fluid and especially on the component v2 in gap height 
direction for hydrodynamic lubrication caused by bone rotation, hence we derive the 
modified Reynolds equations for hydrodynamic pressure function p(α1, α3) in the 
following form [26]: 
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where p ≡ p(0) + Ap(1) + O(A2), 0 ≤ α1 ≡ ϕ ≤ 2πc1, 0 < c1 < 1, bm ≡ πR/8 ≤ α3 ≡ ϑ ≤ πR/2 
≡ bs ε = ε[u2( p)], –0.02 ≤ κ ≡ 4[(η∞)2 – η0η∞](η∞)–2 ≤ –0.04. 

If we insert the Duhamel–Neumann and strain–displacement relations [10] in 
boundary conditions (A2), (A7) for normal stress and pressure occurring in joint 
cartilage, we will obtain the following equation (see Appendix 1):  
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where: u2 = u2( p, T ) is the component of displacement vector in cartilage in gap height 
direction, ∆T is the function of temperature difference in cartilage layer in gap height 
direction obtained from heat transfer equation, and κ* is the thermal conductivity of 
the cartilage body. Symbol p denotes total pressure. Equation (19) determines the 
unknown pressure function p(0) as the first approximation of total pressure, while 
equation (20) – the unknown pressure function p(1), i.e. Ap(1), which describes 
correction values of total pressure.  

Integrating twice equation (14) for i = 2 with respect to the variable α2 and 
assuming the boundary condition (21), (A7), we obtain elastic layer displacements ui, 
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where the unknown u2 denotes displacement of cartilage in gap height direction (see 
Appendix 2). 

5. Cartilage deformations 
in the region of lubrication  

For oil film resting on spherical bone surface we have the following Lamé 
coefficients: 

 h1 = R sin (α3/R),     h2 = 1,     h3 = 1 ,  (22) 

where R is the radius of a sphere. We introduce the following denotations: α1 ≡  φ  – 
circumference direction, α2 = r – gap height direction, and α3 ϑ≡  – (meridian) 
direction. The dependencies between rectangular (x, y, z) and spherical (α1 = ϕ, α2 = r, 
α3 = ϑ ) co-ordinates have the following classical form: 

 x = r sin 







R
ϑ cosϕ,    y = r sin 








R
ϑ sinϕ,    z = r cos 








R
ϑ ,    0 < r < R . (23) 

 

cartilage
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Fig. 4. Centers of spherical cartilage body and spherical bone head 
during lubrication caused by rotation in variable, time-dependent magnetic intensity H 

and deformed cartilage 

 

Fig. 5. Pressure-distribution region resting on surface of bone head 
during lubrication caused by rotation 

 

Fig. 6. Centers of spherical cartilage body and spherical bone head 
during lubrication caused by squeezing 
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The centre of a spherical bone head O(0, 0, 0) and the centre of a spherical 
cartilage in the point O1(x – ∆ε1, y – ∆ε2, z + ∆ε) for hydrodynamic lubrication caused 
by rotation is presented in figure 4, and for hydrodynamic lubrication caused by 
squeezing – in figure 6. A region of hydrodynamic lubrication due to rotation is shown 
in figure 5 and that due to squeezing – in figure 7. 

 

Fig. 7. Pressure-distribution region resting on surface 
of bone head during lubrication caused by squeezing 

Equation representing spherical cartilage surface in the centre point O1(x – ∆ε1, 
y – ∆ε2, z + ∆ε) can be written as: 

(x – ∆ε1)2 + ( y – ∆ε2)2 + (z + ∆ε3)2 = (R + D + εmin)2, 
  (24) 
 D = [(∆ε1)2 + (∆ε2)2 + (∆ε3)2]0.5.  

Inserting dependencies (23) in equation (24) we obtain: 

(r cosϕ sinα3/R – ∆ε1)2 + (r sinϕ sinα3/R – ∆ε2)2  

 + (r cosα3/R + ∆ε3)2 = (R + D + εmin)2.  (25) 

Gap height has the following form: 

 ε(ϕ, α3/R) ≡ u2 + r – R .  (26) 

We find function r from equation (25) and insert it in formula (26). The gap height 
has finally the following form: 

ε(ϕ, α3/R) = u2 + ∆ε1cosϕ sin(α3/R) + ∆ε2 sinϕ sin(α3/R) 

 – ∆ε3 cos(α3/R) – R + {[∆ε1cosϕ sin(α3/R) + ∆ε2 sinϕ sin(α3/R)  

 – ∆ε3 cos(α3/R)]2 + (R + εmin)(R + 2D + εmin)}0.5. (27) 

The minimum of gap height for a spherical hip joint we obtain from the formula [5]: 
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where E1, E2, ν1, ν2 are elastic module and the Poisson ratio for bone head and 
cartilage, respectively, C is the load, and the quantities η, ω, R are defined previously. 
Dependence (1) for Θ ≈ ωR/εmin can be written in the following form: 
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Combining equations (28),(29) we obtain the system of two equations determining 
two unknown quantities, namely dynamic viscosity η of synovial fluid and minimal 
value εmin of gap height. In these equations, elastic deformations of cartilage are taken 
into account. If we assume that R = 2.6 × 10–2 m, E = 2 × 105 Pa, ωR = 3 × 10–1 m/s, η∞ = 
0.10 Pas, 2πR/C = 3 × 10–4 m/N, η0/η∞ ≅ 1000, A = 1.88 s, C = 544.26 N, then we 
obtain εmin = 0.0000208 m = 20.88 µm and η = 0.1036 Pas. If the following quantities: 
A = 1.88 s, η0 = 100.00 Pas, η∞ = 0.10 Pas, R = 0.020 m, C = 544 N, 0.50 s–1 ≤ ω ≤ 
10.00 s–1, 2 × 105 Pa ≤ E ≤ 2 × 107 Pa are involved in computations, then we obtain 
minimal value of gap height in the interval of 0.29 µm ≤ εmin ≤ 19.90 µm. 

6. Numerical calculations of pressure distributions 
and carrying capacities in deformed human spherical hip joint 

6.1. Formulae for carrying capacity forces 

Total carrying capacity force exerted on curvilinear bone head is given by the 
surface integral from following formula: 

 
( )

),(),( 31
,

31tot

31

ααΩαα
ααΩ

dpC ∫∫≡ .  (30) 

Area element in the double integral has the following form: 
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Symbol r0 denotes radius vector for bone head surface; 0 < α1 ≡ ϕ < 2πc1, 0 < c1 < 1, 
πR/8 < α3 ≡ ϑ < πR/2 for rotation, and 0 < α3 ≡ ϑ < πR/18 for squeezing. Radius 
vector r0 we obtain from the formula: 

 ro = i x + j y + k z , (32) 

where i, j, k are unit vectors and for spherical coordinates we have: 

 x = R cos ϕ sinϑ/R,     y = R sin ϕ sinϑ/R,     z = R cosϑ/R . (33) 

If we insert dependence (33) in (32) and afterwards (32) in formula (31), then we 
obtain: 

 dΩ = R2sin(ϑ/R)dϕd(ϑ/R).  (34) 

6.2. The method of numerical calculations 

Partial differential equations (16), (19) of the second order and elliptical kind 
representing hydrodynamic lubrication by rotation and hydrodynamic lubrication by 
squeezing are examined numerically in spherical coordinates. Numerical calculations 
were done using Mathcad 2000 Professional Program and the Method of Finite 
Differences. This method satisfies the requirement of stability of numerical solutions 
of pressure function in the partial differential modified Reynolds equations of the 
second order with variable coefficients in the form (16) and (19). We impose 
atmospheric pressure on the curvilinear boundaries of the region Ω resting on the 
surface of head of bone in human hip joint. 

Dynamic viscosity of synovial fluid decreases with the increase of the shear rate. 
Shear rate of synovial fluid increases if angular velocity ω of head of human hip joint 
increases or joint gap height decreases. In the present calculations, these changes are 
taken into account. 

6.3. Capacity forces for hydrodynamic lubrication by rotation 

If magnetic field is neglected, then modified Reynolds equation (19) for 
hydrodynamic lubrication caused by rotation of spherical bone head has the following 
form: 
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where 0.30π < α1 ≡ ϕ < 1.30π, πR/8 < α3 ≡ ϑ < πR/2. 
In numerical calculations, we assume the following values for joint gap: ∆ε1 = 

2 µm, ∆ε2 = 2 µm, ∆ε3 = +2 µm, radius of bone head R = 0.026575 m and a boundary 
of the region Ω(α1, α3) resting on bone head is subjected to atmospheric pressure (see 
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figure 5). For a normal hip joint we assume in calculations the smallest gap height εmin 
= 2.0 µm. Taking into account the angular velocity of bone head ω = 1 s–1 and an 
average value of dynamic viscosity of synovial fluid η0 = 0.03 Pas, we obtain from 
equation (35) that hydrodynamic pressure p(0) has maximal value equal to 1.11 × 106 
N/m2 and capacity Ctot = 673 N. Taking into account the angular velocity of bone head 
ω = 0.1 s–1 and an average value of dynamic viscosity of synovial fluid η0 = 0.40 Pas, 
we obtain from equation (35) that hydrodynamic pressure p(0) has maximal value equal 
to 1.44 × 106 N/m2 and carrying capacity Ctot = 897 N (see figure 8). Lubrication 
surface has value πR2cosπ/8 ≈ 20.50 cm2. 
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Fig. 8. Two cases of pressure distribution in normal spherical hip joint gap 
during hydrodynamic lubrication caused by rotation 



Capacity of deformed human joint gap 59 

 

Fig. 9. Two cases of pressure distribution in pathological spherical hip joint gap 
during hydrodynamic lubrication caused by rotation 
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For a pathological hip joint we assume in calculations the smallest gap height εmin = 
1.0 µm. For the angular velocity of bone head ω = 1 s–1 and an average value of 
dynamic viscosity of synovial fluid η0 = 0.005 Pas, we obtain from equation (35) that 
hydrodynamic pressure p(0) has maximal value equal to 0.76 × 106 N/m2 and carrying 
capacity Ctot = 341 N. Taking into account the angular velocity of bone head ω = 
0.1 s–1 and an average value of dynamic viscosity of synovial fluid η0 = 0.07 Pas, we 
obtain from equation (35) that hydrodynamic pressure p(0) has maximal value equal to 
1.034 × 106 N/m2 and carrying capacity Ctot = 477.5 N. These pressure distributions on 
bone head for gaps of the normal and pathological human hip joints are shown in 
figures 8 and 9, respectively. 

For the capacities of 897 N and 673 N occurring in normal joint we obtain the 
following compressive stresses: σ = 897 N/20.4 cm2 = 0.43 N/mm2 = 0.43 MN/m2 and 
σ = 673 N/20.4 cm2 = 0.33 N/mm2 = 0.33 MN/m2. In pathological joint, compressive 
stresses are as follows: σ = 341 N/20.4 cm2 = 0.16 N/mm2 = 0.16 MN/m2 and σ = 
477.5 N/20.4 cm2 = 0.23 N/mm2 = 0.23 MN/m2. These stresses are smaller than 
compressive strength of 21 MN/m2 of human bone [1], [3]–[6]. 

6.4. Capacity forces for hydrodynamic lubrication by squeezing  

If magnetic field is neglected, then the Reynolds equation (16) for hydrodynamic 
lubrication caused by squeezing between spherical bone heads has the following form: 
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0 < α1 ≡ φ ≤ 2π,  0 < α3 ≡ ϑ ≤ Rπ/18, 0 < α2 ≡ r ≤ ε. 
In calculations, we assume the following parameters for human joint gap: ∆ε1 = 

–5 µm, :∆ε2 = –5 µm, :∆ε3 = +5 µm, the radius of bone head R = 0.026575 m and 
a boundary for region Ω(α1, α3):{0 < α1 ≡ φ ≤ 2π,  0 < α3  ≡ ϑ ≤ Rπ/18} resting on 
bone head is subjected to the atmospheric pressure (see figure 7). Taking into account 
uniform velocity of the bone head U = 0.05 m/s, the smallest gap height εmin = 15 µm 
and an average value of the dynamic viscosity of synovial fluid η0 = 0.03 Pas, we 
obtain from equation (36) that hydrodynamic pressure p(0) has maximal value equal to 
22.52 × 106 N/m2 and capacity Ctot = 1016 N. Taking into account uniform velocity of 
bone head U = 0.20 ms–1, the smallest gap height εmin = 20 µm and an average value of 
the dynamic viscosity of synovial fluid η0 = 0.01 Pas, we obtain from equation (36) 
that hydrodynamic pressure p(0) has maximal value equal to 13.37 × 106 N/m2. The 
surface of lubrication is equal to 2πR2[1 – cos(π/18)] ≈ 0.67 cm2, and capacity Ctot = 
603 N (see figure 10). 
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Fig. 10. Two cases of pressure distribution in normal spherical hip joint 
during hydrodynamic lubrication caused by squeezing 
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Fig. 11. Two cases of pressure distribution in pathological spherical hip joint 
during hydrodynamic lubrication caused by squeezing 
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In calculations for a pathological hip joint, we assume a uniform velocity of bone 
head U = 0.05 ms–1, the smallest gap height εmin = 15 µm and an average value of the 
dynamic viscosity of synovial fluid η0 = 0.01 Pas. Hence, from equation (36) we 
obtain that hydrodynamic pressure p(0) has maximal value of 7.57×106 N/m2 and 
carrying capacity Ctot = 338.6 N. Taking into account uniform velocity of bone head U = 
0.20 s–1, 
the smallest gap height εmin = 20 µm and an average value of the dynamic viscosity 
of synovial fluid η0 = 0.005 Pas, we obtain from equation (36) that hydrodynamic 
pressure p(0) has maximal value equal to 6.74×106 N/m2. Contact surface approaches 
0.674 cm2 and capacity is Ctot = 301.5 N (see figure 11). 

For the capacities equal to 1016 N, 603 N occurring in normal joint we obtain the 
following compressive stresses: σ = 1016 N/0.674 cm2 = 15.07 N/mm2 = 15.07 MN/m2 
and 
σ = 603 N/0.674 cm2 = 8.95 N/mm2 = 8.95 MN/m2. In pathological joint, compressive 
stresses are as follows: σ = 338.6 N/0.674 cm2 = 5.02 N/mm2 = 5.02 MPa and σ = 
301.5 N/0.674 cm2 = 4.5 N/mm2 = 4.5 MPa.These stresses are smaller than bone 
compressive strength (21 MN/m2) of 20- or 30-year-old human in good health. Bone 
compressive strength of 70-year-old human approaches 12 MN/m2. These compressive 
stresses will damage the bone of 70-year-old human [1], [3]–[6]. 

Present method enables us to obtain solutions in the form of the Taylor series with 
increasing powers of small parameter A. The parameter A was obtained experimentally 
for synovial fluid. In particular case, for symmetrical flow we can by virtue of the 
present theory find analytical solutions in simple form. The percentage corrections of 
velocity )1(

iv  and of pressure p(1) caused by the non-Newtonian properties of synovial 
fluid are examined numerically in the following ratio form: 

 )0(

2)1( )(100
p

AOAp + in per cent.  (37) 

For large shear rates, i.e. 100 s–1 ≤ Θ ≤ 1000 s–1, viscosity of synovial fluid is 
as small as 10–1 Pas ≤ η ≤ 1 Pas (see figure 6). In this case, from equation (37) we 
obtain small pressure changes ranging from 2% to 4%. For such small shear rates as 
10–1 s–1 ≤ Θ ≤ 10 s–1, the viscosity is large, i.e. 10 Pas ≤ η ≤ 100 Pas. In this case, from 
equation (37) we obtain the pressure change ranging from 7% to 15%. Unsteady 
magnetic induction field 0.1 mT with the frequency of about 60 Hz changes the 
pressure distributions from 1 to 4%. 
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Appendix 1 

The Duhamel–Neumann relations between the components τij of the stress tensor S in the elastic 
cartilage and the components ijε  of the strain tensor have the following form [10]: 

 ( ) ijTkkijij KTG δαεΛετ *32 −+=   (A1) 

for i, j = 1, 2, 3, where 
ijδ  is the unit Kronecker tensor component (δij = 0 for i = j and δij ≠ 0 for i ≠ j). 

Now we consider the strain–displacement relations given in [10]: 
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where ui are the components of the displacement vector u of cartilage. 
We insert the stress–strain relation, equation (A1), and strain–displacement relations, equation (A2), 

into the following motion and heat equations for cartilage: 

 Div S = 0,  (A3) 

 div(κ*gradT *) = 0,  (A4) 

where *κ  stands for thermal conductivity for cartilage body, and T * is a temperature in cartilage body. 
The height of elastic layer is of the order of sε  which is about thousand times smaller than the radius 

of the body of cartilage curvature or other quantities occurring in the friction region. If the temperature 
T * in elastic cartilage and the displacement vector u in cartilage are independent of time t and if the terms 
of the order of sε  are neglected, then from equations (A3), (A4) we obtain the following system of partial 
differential equations of the second order, namely equation (14) and simplified heat transfer equation: 
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for i = 1, 2, 3; 0 ≤ α1 ≡ ϕ ≤ 2πc1, 0 < c1 < 1, bm ≡ πR/8 ≤ α3 ≡ ϑ ≤ πR/2 ≡ bs. The height of elastic cartilage 
changes in the range from s2 to s3, i.e. s2 ≤ α2 ≤ s3. 

On the internal surface of cartilage α2 = s2, where an elastic layer of cartilage is in contact with the 
synovial fluid, the normal stresses are equal to the hydrodynamic pressure p with opposite sign, and the 
tangential stresses equal zero. The hydrodynamic pressure p acts vertically on the external surface of the 
elastic layer of cartilage and therefore the pressure is not distributed into tangential stresses on the 
surface. The elastic layer of cartilage is laying on a rigid bone in the place α 2 = s3, and therefore the 
contact surface of these bodies is not deformed by the pressure. The boundary conditions in the elastic 
cartilage have the following form:  

 ijiij ps δδααααατ 2313221 ),(),,( −== , (A6) 

 iu ,0),,( 3321 == ααα s   (A7) 

where i = 1, 2, 3. 
We insert the stress–strain relation (A1) and strain–displacement relation (A2) into equations 

expressing the boundary conditions (A6, A7). In these equations, we neglect the terms of the order of 
310/ −≅Rsε  being compared with the terms of the order of 1, where R denotes the length of the radius of 

the bone head. Hence we obtain equation (21). 
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Appendix 2 

Displacement of elastic layer in gap height direction has the following form: 
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where: 0 ≤ α1 ≡ ϕ ≤ 2πc1, 0 < c1 < 1, bm ≡ πR/8 ≤ α3 ≡ ϑ ≤ πR/2 ≡ bs, s2 ≤ α2 ≤ α2s ≤ s3, α2s is an integration 
parameter, ∆T *(α1, α2, α3) are the changes of the temperature in an elastic cartilage layer. 
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