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Abstract 

Purpose: Plantar pressure distribution is a crucial indicator in gait analysis, with significant 

value in clinical diagnoses and sports optimization. Traditional measurement methods, however, 

are often limited by expensive equipment and laboratory settings. This study aimed to develop 

an accurate, portable, and cost-effective method using a deep learning model based on data 

from wearable Inertial Measurement Units (IMU) to predict comprehensive plantar pressure 

distributions. Methods: We propose a hybrid model combining a Convolutional Neural Network 

(CNN) and a Bidirectional Long Short-Term Memory (BiLSTM) network. The CNN extracts 

local features from IMU data; the BiLSTM captures temporal dependencies; a temporal 

attention mechanism optimizes the prediction of key time steps; and body weight information 

is integrated to accommodate individual differences. Results: Experimental results show that in 

10-fold cross-validation, the model achieves a Mean Squared Error of 0.98 and a Structural 

Similarity Index of 0.89, demonstrating excellent prediction accuracy and distribution similarity. 

Conclusions: This study provides a cost-effective method for plantar pressure analysis, which 

is expected to be integrated into wearable devices for real-time gait monitoring, with 

applications in rehabilitation and sports optimization. 
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1 Introduction 

The analysis of plantar pressure distribution plays an important role in both clinical 

practice and applied research settings. For example, these pressure data can be used to assess 

human motion function[7], monitor foot pathologies[4], and improve footwear design to 

optimize athletic performance[28]-[30]. However, traditional methods for measuring plantar 

pressure, such as insole-based pressure measure systems, are typically expensive, lack 

portability, and are restricted to laboratory environments, thereby limiting their broader 

application in practical settings. 

In recent years, with the development of wearable sensor technology, inertial measurement 

units (IMUs) have gained widespread attention due to their portability, low cost, and ease of 

use[14],[22]. IMUs can capture lower limb kinematic parameters such as segment accelerations, 

angular velocities, and joint angles in real-time, providing a new approach for gait analysis[16]. 



 

 

Hamdi et al. concluded that IMUs can accurately capture most of the key biomechanical 

variables that describe human gait. As long as the system can effectively describe normal 

walking gait, it can also be used for capturing other gait activities, such as running, stair 

climbing, and descending[8]. However, accurately predicting plantar pressure distribution from 

IMU data remains a significant challenge. O’Reilly et al. pointed out that the main issues 

currently faced by IMU systems are sensor misalignment, bias, and white noise, which can 

affect the accuracy of the data. Additionally, issues such as sensor calibration and alignment 

still need to be addressed in order to reduce data errors[20]. Existing studies often employ 

statistical models or traditional machine learning approaches, but these methods demonstrate 

limitations in handling complex temporal data and capturing the non-linear relationships 

between segmental kinematics and plantar pressure distributions[18]. 

Convolutional Neural Networks (CNN) represent a promising approach for modeling the 

relationship between human movement and wearable sensor data. Chhoeum et al. successfully 

modeled the relationship between plantar pressure mapping images and knee joint angles, 

achieving knee joint angle estimation from plantar pressure images while wearing three 

different types of footwear[6]. Long Short-Term Memory (LSTM) networks are a specialized 

variant of recurrent neural networks (RNNs) designed to handle sequential data. In Xiang et 

al.’s research, they implemented LSTM networks for predicting ankle joint angles, torques, and 

contact forces using IMUs[34]. Similarly, Zhang et al. used LSTM to accurately predict joint 

moments for ankle, knee, and hip joints based on joint angles and EMG signals from multiple 

movements[39]. In contrast, this study introduces a novel hybrid deep learning model 

combining CNN, bidirectional LSTM (BiLSTM), and a temporal attention mechanism to 

predict dynamic plantar pressure distribution from IMU data., our approach achieves superior 

performance (MSE=0.98, SSIM=0.89). 

The aim of this study is to develop an accurate, portable, and cost-effective method for 

predicting comprehensive plantar pressure distributions using wearable IMU technology. 

Specifically, the model aims to capture the plantar pressure distribution throughout dynamic 

movements, encompassing various regions of the foot, thereby facilitating real-time gait 

analysis and supporting applications in clinical diagnosis, rehabilitation, and performance 

enhancement. Through this research, we intend to provide novel technical solutions for 



 

 

personalized rehabilitation, sports performance optimization, and the development of wearable 

devices. 

2 Materials and Methods 

2.1 Data Collection 

2.1.1 Participants 

A total of 25 healthy adults (13 males, 12 females; age: 23.50  0.84 years; height: 174.20 

 5.50 cm; weight: 73.3  10.6 kg) participated in the experiment to collect data. The inclusion 

criteria for participants were as follows: 1) Participants had no history of lower limb surgery; 

2) Participants had no injury-related factors that could interfere with the study in the past six 

months; 3) Participants were required to be free of any neurological disorders to ensure the 

internal validity of the study.; 4) Participants with a dominant right foot were aged between 18 

and 45 years, exhibited a stable gait pattern, and had no noticeable limping or abnormal gait. 

All participants provided written informed consent for the experimental procedures, and the 

study was approved by the Ethics Committee of Ningbo University (TY2025033). This study 

strictly adhered to the principles outlined in the Declaration of Helsinki. 

2.1.2 Experimental set-up and protocol 

Before the experiment, each participant was required to be barefoot to ensure accurate 

plantar pressure measurements and eliminate the interference caused by different shoes[3],[40]. 

They were also equipped with the Xsens Suit Configuration (Movella Technologies, Enschede, 

Netherlands). This suit included eight Xsens inertial sensors, which were positioned according 

to the predefined sensor placements outlined in the Xsens Link manual[19]. The sensors were 

secured using Velcro straps and designated pockets integrated into the suit. The suit size was 

adjusted according to each participant’s body shape to ensure a snug fit, maintaining consistent 

sensor positioning and minimizing measurement errors resulting from sensor 

displacement[23],[38]( The IMU placement is detailed in the Supplementary Files Figure 

S2.).Since the participants were barefoot, they were instructed to walk freely for 10 minutes 

prior to the experiment to familiarize themselves with the setup and ensure that no discomfort 

was experienced due to overly tight sensor placement. To ensure the collected data accurately 

reflected a natural walking pattern, the first step of the experiment involved determining each 

participant’s tailored preferred walking speed (T-PWS). This approach is crucial as walking at 



 

 

a self-selected speed is known to minimize gait variability, leading to a more stable and 

representative movement pattern for analysis. To achieve this, the treadmill’s digital speed 

display was obscured from view. Participants commenced walking at a slow speed, and the 

investigator gradually increased the speed in increments of 0.1 km/h until the participant 

reported that they had reached their optimal T-PWS. Subsequently, the speed was increased by 

1.5 km/h and then gradually decreased in increments of 0.1 km/h to reestablish the T-PWS. This 

process was repeated three times, ensuring a variation of less than 0.4 km/h, and the average 

speed was computed to establish the final T-PWS[13]. Subsequently, calibration was conducted 

using the Zebris FDM system (Gait Analysis Model FDM-TDSL-3i, Zebris Inc.®, Germany) 

and Xsens MVN Analyze Pro software in accordance with the respective manuals to eliminate 

experimental errors. Upon achieving satisfactory calibration results, participants proceeded to 

walking on a treadmill embedded with the Zebris pressure plate at the previously determined 

T-PWS (with a 0° incline). Data collection commenced once a stable gait was achieved 

(approximately 1.5 minutes into the trial), as the coefficient of variation for stride length and 

stride time reaches its minimum under stable gait conditions[17]. Two software were then used 

simultaneously to record plantar pressure data and corresponding inertial sensor data for a 

duration of 30 seconds[36]. This procedure was repeated six times. 

2.2 Data Preprocessing 

2.2.1 Dealing with IMU Data 

The IMU data were collected using Xsens MVN Analyze Pro (2024.2) software at a 

sampling frequency of 100 Hz in “On-Body Recording Mode”. Each sensor captured motion 

across three anatomical planes (coronal, sagittal, and transverse) and six movement directions 

(as shown in Figure 1A). Post-processing of all motion measurements was conducted using the 

software’s “High-Definition Reprocessing” mode and the “No-Level” processing scenario. 

In this scenario, the pelvis segment was spatially fixed, and all kinematic variables were 

expressed relative to the pelvis, which is the recommended approach for joint angle analysis in 

biomechanics[25]. 

During this phase, the software computed the 3D joint angles for all joints within the Xsens 

biomechanical model, adhering to the the International Society of Biomechanics (ISB) 

guidelines for defining the coordinate systems of the ankle, knee, and hip joints[33]. 



 

 

 

Figure 1 Overview of the Experimental and Data Analysis Workflow. A) Experimental protocol; 

B) Gait event detection; C) Experimental flow chart 

We utilized the angular velocity data obtained from the processed lower-leg sensor to 

define gait events, specifically heel strike (HS) and toe-off (TO), which together constitute the 

stance phase of a single gait cycle. The gait angular velocity data collected by Xsens were 

processed using a third-order Butterworth low-pass filter. This filter was designed with a 

sampling frequency of 100 Hz and a cutoff frequency of 20 Hz to achieve zero-phase filtering, 

effectively eliminating phase delays and ensuring accurate signal processing[2]. For HS 

detection, after eliminating spurious noise using the 20 Hz low-pass zero-phase lag filter, an 

automated Python program was employed to reliably identified peaks in the gyroscope signal. 

These peaks, as supported by previous research, were precisely defined as HS points[2],[9]. 

However, for TO detection, we observed that the peak immediately following HS did not 

correspond precisely to the TO point. Instead, TO occurred with a noticeable delay relative to 

the subsequent peak after HS. According to the zero-crossing detection method proposed by 

Bötzel et al.[2], the TO point was defined as: 

TOposition = peak height + 0.49 × (zero-crossing position − peak position) (1) 

where the zero-crossing point was defined as the point where the signal transitioned from 

positive to negative after the initially assumed TO peak. The coefficient 0.49 was the optimal 

value for comprehensive multi-speed scenarios. The TO point defined under this coefficient 



 

 

was closest to the TO point measured by the pressure insole, with a standard deviation of 0.16. 

Following the above methodology, the gait events in Xsens data were accurately identified and 

extracted with high precision by a custom Python program. The detailed gait event definition 

process is clearly illustrated in Figure 1B, and the whole experimental process is illustrated in 

Figure 1C. 

2.2.2 Plantar pressure 

While wearing Xsens inertial sensors, participants walked on a treadmill embedded with 

a pressure mat at a 0% incline and at their PWS. The Zebris system recorded plantar pressure 

distribution at a sampling frequency of 120 Hz. 

Raw XML files were exported using the Zebris FDM software, containing detailed 

pressure values (unit: N/cm²) collected by each pressure sensor during each stance phase. A 

custom Python script was used to extract and save the detailed pressure values of every frame 

for each stance phase as CSV files, with each file labeled according to its corresponding gait 

cycle number. 

Finally, the IMU data obtained from the Xsens sensors and the plantar pressure data were 

synchronized using a Python script. Cubic spline interpolation was applied to the Xsens data, 

and they were aligned with the gait events, representing 0% to 100% of a complete stance phase. 

To ensure dataset accuracy and completeness, trials with abnormal values or missing data were 

automatically excluded from the analysis. 

The experiment was repeated six times, resulting in a total collection of 1,808 entries of 

IMU data and 1,825 entries of plantar pressure data. After preprocessing, which involved 

removing unsynchronized data and data with obvious outliers, 1,737 matched pairs of Xsens 

data and plantar pressure data were retained as the dataset for training the model. 

2.3 Building a Hybrid CNN-BiLSTM Architecture 

This study innovatively employs a CNN-BiLSTM-Attention deep learning model. The 

motivation for this architecture is to leverage the distinct strengths of each component for gait 

data analysis. We use a CNN to automatically extract local, transient features from the raw IMU 

time-series data, such as the rapid changes during heel strike. Subsequently, a BiLSTM network 

is employed to model the long-range temporal dependencies inherent in a full gait cycle, 

capturing the entire sequence from start to finish. Finally, a temporal attention mechanism is 



 

 

integrated to allow the model to dynamically weigh the importance of different time steps, 

focusing on the most biomechanically significant moments for pressure prediction.  

As a supervised learning approach, CNN-BiLSTM-Attention is capable of capturing the 

temporal dependencies between input and output data[21],[37]. This approach is used to predict 

the plantar pressure distribution based on the corresponding lower-limb kinematic parameters 

at each time step. The detailed workflow of the model, from input to output, is illustrated in 

Figure 2D. The input data first passes through a single-layer 1D-CNN (kernel size of 3, 256 

filters) to extract 256 feature channels from 18 input channels (Figure 2A), followed by the 

Rectified Linear Unit (ReLU) activation and BatchNorm1D to enhance stability[11]. 

Subsequently, the features are fed into a three-layer BiLSTM (Figure 2C) to capture long-term 

dependencies in the time series (a detailed architecture of a single LSTM unit is depicted in 

Figure 2B). Next, a temporal attention mechanism (Figure 2E) weights the LSTM outputs, 

focusing on critical time steps to generate a weighted context vector[31]. Finally, the body 

weight feature is transformed into a higher-dimensional representation via fully connected 

layers, concatenated with the weighted features, and passed through a decoder to produce 

personalized plantar pressure predictions. Figure 2D presents the complete architecture of the 

CNN-BiLSTM-Attention model. More details are provided in the supplementary file. 



 

 

 

Figure 2 The specific architecture, workflow, and attention mechanism of the model 

2.4 Hyperparameters 

Hyperparameters for the CNN and BiLSTM modules were optimized using the Optuna 

framework[1]. The attention mechanism was not a primary focus for tuning, as its parameters 

are relatively few, and preliminary experiments indicated that classic configurations adequately 

captured temporal features[31]. The final hyperparameter configuration, selected based on 

achieving the lowest validation loss, is presented in Table 1. A detailed account of the specific 

tuning procedures is provided in the Supplementary File (Text S2). 

Table1. Optimal parameter configuration of the CNN-BiLSTM-Attention model 

Parameter Configuration 

Batch Size 32 



 

 

Epochs 35 

Dropout Rate 0.17 

Learning Rate 1.86e-4 

Optimizer Adam 

2.5 Training 

We divided the entire dataset in a 7:3 ratio into a training set (70%) and a test set (30%), 

ensuring the test set remained completely independent from the model training and validation 

process. On the training set, we employed 10-fold cross-validation to evaluate the model. The 

process involved dividing the training set into 10 non-overlapping subsets, using 9 subsets to 

train the model during each iteration while the remaining subset served as the validation set, 

this process was repeated 10 times, ensuring that each subset served as the validation set exactly 

once[15]. Through this 10-fold cross-validation approach, we derived a final model. Finally, 

we evaluated the performance of this final model on the previously unseen test set. The primary 

goal of the training is to enable the model to accurately predict the distribution of plantar 

pressure. During training, we use MSE as the cost function, which minimizes the squared error 

between the predicted pressure map and the ground truth pressure map to adjust the model’s 

parameters and improve prediction accuracy. 

MSE =
1

𝑁
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑁

𝑖=1

(2) 

Where 𝑁 represents the number of samples, 𝑦𝑖 represents the true pressure value for the 

𝑖-th sample, and 𝑦�̂� represents the predicted pressure value for the 𝑖-th sample. The MSE is 

computed based on the error of each pressure point, rather than simply summing all pressure 

values. 

In addition, we use several other evaluation metrics to assess the model’s performance, 

including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Coefficient of 

Determination (R² Score), Structural Similarity Index (SSIM), and Peak Pressure Error (PPE): 

MAE =
1

𝑁
∑|𝑦𝑖 − 𝑦�̂�|

𝑁

𝑖=1

(3) 

MAE Calculates the absolute error between predicted and true values, giving a 

straightforward measure of the average prediction error (in units of N/cm²). 



 

 

RMSE = √
1

𝑁
∑(𝑦𝑖 − 𝑦�̂�)2
𝑁

𝑖=1

(4) 

RMSE emphasizes larger errors more than MAE, making it more sensitive to larger 

deviations (in units of N/cm²). 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

(5) 

R²: Reflects the goodness of fit of the model. An R² value closer to 1 indicates better model 

fit. 

SSIM(𝑥, 𝑦) =
(2μ𝑥μ𝑦 + 𝐶1)(2σ𝑥𝑦 + 𝐶2)

(μ𝑥2 + μ𝑦2 + 𝐶1)(σ𝑥2 + σ𝑦2 + 𝐶2)
(6) 

SSIM measures the structural, brightness, and contrast similarity between the predicted 

and true pressure maps. It ranges from 0 to 1, where a value closer to 1 indicates a more accurate 

prediction of plantar pressure distribution. μ𝑥  and μ𝑦  represent the mean pixel values of 

images 𝑥 and 𝑦, respectively. σ𝑥
2 and σ𝑦

2  are the variances of images 𝑥 and 𝑦, and σ𝑥𝑦 is 

the covariance between 𝑥 and 𝑦[32]. 

PPE = |max(𝑦) −max(�̂�)| (7) 

PPE measures the error between the predicted and true maximum pressure values, 

assessing the model’s ability to predict high-pressure areas (in units of N/cm²). 

To reduce overfitting in the neural network, we employ the ReduceLROnPlateau learning 

rate scheduler and the best model saving mechanism as part of the early stopping strategy. 

Specifically, we use ReduceLROnPlateau to monitor the validation loss[27]. If the validation 

loss does not decrease after 5 consecutive training rounds, the learning rate is automatically 

reduced by 50% to prevent the model from getting stuck in local optima or experiencing 

vanishing gradients. Additionally, after each epoch, we check the current model’s validation 

loss and save the model with the lowest validation loss, ensuring that the model with the best 

generalization ability is used for final evaluation. Since the learning rate continuously decreases, 

the update step size for model parameters becomes smaller as the model converges, stabilizing 

the training process and leading to natural termination. This strategy effectively reduces 

unnecessary training cycles, improves training efficiency, and ensures the optimal performance 



 

 

of the final model. 

3 Results 

Figure 3A illustrates the angular velocity profiles of the right lower limb segments—

including the thigh, shank, and foot. These profiles are presented along all three anatomical 

axes (X, Y, and Z). Figure 3B displays the corresponding joint angle trajectories of the right hip, 

knee, and ankle, providing a detailed depiction of lower limb articulation throughout the stance 

phase. 



 

 

 
Figure 3 Features of IMU data. Figure A presents the angular velocity data of the lower limb 

joints. The first column shows the angular velocities of the right thigh in the X, Y, and Z axes, 



 

 

the second column corresponds to the right shank angular velocities in the X, Y, and Z axes, 

and the third column represents the right foot angular velocities in the X, Y, and Z axes. Figure 

B presents the joint angle data of the lower limbs. The first column shows the right hip joint 

movements in adduction/abduction, internal/external rotation, and flexion/extension. The 

second column shows the knee joint movements in adduction/abduction, internal/external 

rotation, and flexion/extension. The third column shows the ankle joint movements in 

inversion/eversion, internal/external rotation, and plantarflexion/dorsiflexion. The black line in 

the figure represents the mean, while the light black area indicates the standard deviation. 

Table2. The mean value and standard deviation of MAE, RMSE, R2, SSIM and PPE 

Metric MeanSD 

MAE 0.29710.0101 

RMSE 0.93320.0314 

R2 0.89430.0169 

SSIM 0.89110.0051 

PPE 4.02100.3476 

As shown in the Table 2 and Figure 4 the proposed CNN-LSTM-Attention model performs 

excellently across all evaluation metrics. The low MAE of 0.2971 N/cm² and RMSE of 0.9332 

N/cm² indicate a small average prediction error between the predicted and actual pressure 

values. The high R² of 0.8943 signifies that the model can explain a large portion of the variance 

in the plantar pressure data, indicating a strong goodness of fit. Furthermore, the SSIM of 

0.8911 is particularly noteworthy, as it confirms that the predicted pressure maps have a high 

degree of structural resemblance to the actual maps, which is crucial for biomechanical analysis. 

Finally, the PPE of 4.0210 N/cm² shows the model’s proficiency in predicting the high-pressure 

regions, which are often of clinical significance. 



 

 

 

Figure 4 10-Fold Cross-Validation Average Loss Curve. The plot displays the mean loss value 

at each training epoch. The close convergence of the training and validation loss curves 

indicates that the model learned effectively without significant overfitting. 

The prediction visualizations (Figure 5) further demonstrate the model’s high performance. 

The predicted pressure map is very close to the actual pressure distribution. This indicates that 

the model is capable of accurately predicting the pressure distribution and values during 

walking, while also effectively capturing high-pressure regions and the overall load pattern. 



 

 

 

Figure 5 3D visualization of actual pressure and predicted pressure. There are 6 pairs of images 

in total. The first five pairs of images show the actual plantar pressure images and predicted 

plantar pressure at 10%, 30%, 50%, 70% and 90% of the stance phase respectively. The last 

pair of images shows the actual image and predicted image of the peak plantar pressure recorded 

during the entire stance phase. 

Further analysis of the two-dimensional heat maps (Figure 6) confirms that the model 

intuitively captures the dynamic distribution pattern of plantar pressure. Despite this strong 

overall performance, these visualizations also reveal local prediction errors in the pressure 

distribution. For instance, although the SSIM value reached approximately 0.89, deviations 

were frequently noted between the predicted and actual pressure values, particularly in the 

medial arch region, suggesting that the model may struggle to accurately capture pressure 

characteristics in this specific area. Moreover, discrepancies between the predicted and actual 

pressure magnitudes were also identified; the PPE value reached around 4, corresponding to 4 

N/cm², indicating that the model was unable to predict the absolute pressure values in certain 

regions with high accuracy.  



 

 

 

Figure 6 2D visualization of actual pressure and predicted pressure. The image contains five 

pairs of figures. The top five images represent the actual plantar pressure distributions at 10%, 

30%, 50%, 70%, and 90% of the stance phase, respectively. The bottom five images show the 

corresponding predicted plantar pressure distributions at 10%, 30%, 50%, 70%, and 90% of the 

stance phase. 

4 Discussion 

This study aims to estimate the corresponding plantar pressure distribution and values 

using a CNN-LSTM-Attention hybrid deep learning model, based on lower limb kinematic data 

recorded by IMUs. The model leverages CNN’s ability to extract local features from time-series 

data recorded by IMUs, capturing dynamic changes throughout the gait cycle. Additionally, 

LSTM models the temporal dependencies in the data through its recursive structure, capturing 

how data evolves over time. The attention mechanism weights the importance of different time 

steps, allowing the model to focus on time steps that are more important for prediction. This 

combination effectively aligns with the biomechanical patterns in the gait cycle, specifically 

the process from HS to TO. The prediction results (MAE=0.297, RMSE=0.933, R²=0.894, 

SSIM=0.891) indicate that the model accurately captures the primary characteristics of plantar 

pressure distribution during the stance phase. 

The model’s accuracy in predicting plantar pressure distribution is primarily attributed to 



 

 

its design, including the synergistic interaction between CNN, BiLSTM networks, and the 

temporal attention mechanism[35]. Specifically, the CNN layer extracts local features from the 

IMUs data, such as variations in joint angular velocity or transient patterns in joint angles. After 

convolution, the input data are transformed into high-dimensional features that capture local 

temporal dynamics within the gait cycle, such as the instantaneous movement characteristics 

during foot swing or ground contact. The low RMSE in the experimental results suggests that 

the CNN effectively extracts key motion information related to plantar pressure, laying the 

foundation for subsequent time series modeling. The BiLSTM layer further processes the 

feature sequences extracted by CNN. The memory capability of the BiLSTM enables it to 

capture long-term dependencies in the gait cycle, such as the pressure transfer process from HS 

to TO. The bidirectional design enables the model to simultaneously incorporate information 

from both past and future time steps, thereby ensuring a comprehensive understanding of the 

dynamic changes occurring throughout the gait cycle[26]. The high R² value indicates that the 

BiLSTM successfully explains the trend of pressure distribution changes over time, which is 

crucial for predicting continuous plantar pressure distributions. 

Traditional models often treat all time steps equally, making it difficult to highlight key 

moments in the gait cycle. The introduction of an additional temporal attention mechanism 

allows the model to focus on more important time steps within the gait cycle, bringing a unique 

biomechanical perspective to the model. Specifically, in the gait cycle, certain time steps, such 

as peak pressure moments, have a much greater impact on the results than others. The adaptive 

weight adjustment capability of the attention mechanism allows the model to invest more 

“attention” at these key points, thereby reducing prediction errors. From the visualization of the 

temporal attention mechanism, we found that the model allocated higher attention values at 

critical moments in the gait cycle, such as HS and TO moments. This highly aligns with the 

biomechanics of plantar pressure changes, as peak plantar pressure in the hindfoot occurs during 

HS while peak pressure in the forefoot occurs during TO. This perspective suggests that the 

model not only achieves high prediction accuracy but also demonstrates an understanding of 

the biomechanical relationship between lower limb kinematics and plantar pressure, thereby 

enhancing its explainability. 

In previous research, few researchers have predicted plantar pressure through lower limb 



 

 

kinematic data. In the study by Animesh Hazari et al., a clinically applicable regression model 

was developed for diabetic patients using multivariate linear regression to predict peak plantar 

pressure during walking, aiding in ulcer risk assessment, achieving an R² of 0.908[10]. However, 

this was limited to peak plantar pressure, and multivariate linear regression cannot capture the 

dynamic characteristics of time-series data. Raquel Sánchez Rodríguez et al. investigated the 

relationship between foot posture and plantar pressure patterns during gait, also using 

multivariate linear regression to explore whether the Foot Posture Index (FPI) or its individual 

criteria could predict dynamic plantar pressure in different regions. Their results showed that 

while certain calcaneal frontal plane positions and talonavicular joint prominence had some 

influence on plantar pressure prediction, the ability to predict plantar pressure using this method 

was relatively limited(R²=0.111)[24]. This indicates that FPI has weak predictive power, 

especially in the forefoot region, with predictive effects mainly concentrated on hindfoot and 

midfoot pressure. Su-Bin Joo et al. used pressure insoles to record plantar pressure and an ANN 

model to predict corresponding gait cycle speed based on plantar pressure. By inputting plantar 

pressure data from both stance and swing phases, they predicted speed throughout the entire 

gait cycle with relatively high accuracy (R²=0.730)[12]. In contrast, our research focuses on 

predicting plantar pressure based on lower limb kinematic data. While our prediction target 

differs from previous studies, all revolve around plantar pressure. This paper employed various 

metrics to measure the model’s overall performance (MSE, MAE, RMSE, R², SSIM). The 

SSIM was innovatively introduced to evaluate the spatial structural similarity between 

predicted and actual plantar pressure maps. This is particularly important in biomechanics, as 

the spatial relationship of plantar pressure distribution serves as a crucial indicator in clinical 

diagnosis. The high SSIM value also demonstrates the model’s efficient performance from a 

biomechanical perspective. Additionally, during 10-fold cross-validation, we found minimal 

differences between different folds, further indicating our model’s high generalization 

capability. 

Nevertheless, our research has certain limitations. First, the dataset is limited by its small 

size (N=25) and demographic homogeneity, as the cohort consists exclusively of healthy young 

adults. This restricts the model’s current generalizability to other populations, such as older 

adults. Second, the analysis was restricted to the dominant right limb to ensure consistency, 



 

 

which limits the findings’ applicability to bilateral assessments or individuals with gait 

asymmetries. Third, the model lacks anatomical foot constraints such as foot width or arch 

index, which may contribute to prediction inaccuracies in specific regions like the medial arch. 

Future research could address this by incorporating multi-segment foot models. 

5 Conclusion 

This study proposes an innovative, cost-effective, and portable approach for predicting 

plantar pressure distribution using IMU data. We developed a sophisticated deep learning 

framework that integrates CNN, BiLSTM networks, and a temporal attention mechanism, 

effectively capturing the complex spatiotemporal relationships between lower limb kinematics 

and plantar pressure. The final model achieved an RMSE of 0.93, an R² of 0.89, an SSIM of 

0.89, and a PPE of 4.02, demonstrating its high prediction accuracy. 
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