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Abstract 17 

Purpose: This paper presents numerical modelling of the heat and mass transfer process in a 18 

cryopreserved biological sample. The simulation of the cooling process was carried out 19 

according to the liquidus-tracking (LT) protocol developed by Pegg et al., including eight stages 20 

in which both the bath solution concentration and temperature are controlled to prevent the 21 

formation of ice crystals. 22 

 23 

Methods: To determine the temperature distribution during cryopreservation processes, one 24 

uses the Fourier equation, while mass transfer was taken into account using an equation based 25 

on the Fick's laws. This paper considers a model assuming fuzzy thermophysical parameters 26 

described by a triangular and a Gaussian membership function. The numerical problem was 27 

solved using the finite difference method including fuzzy set theory. 28 

 29 

Results: The diagrams of temperature and mass distributions as a function on time and the 30 

distribution of the fuzzy variable at a given moment in time were prepared. Moreover, the fuzzy 31 

temperatures and concentrations were compared with experimental results from the literature 32 

in table.  33 

 34 

Conclusions: In the conclusions, two different types of membership functions were compared 35 

with each other, with which the fuzzy variables were described. It can be said that the Gaussian 36 

membership function works well for experimental data where the mean and standard deviation 37 

are known. In addition, the obtained results were confronted with experimental data. The 38 

calculated fuzzy temperatures are consistent with the temperature values occurring in the LT 39 

protocol. Larger differences between the experimental data and the calculated values are 40 

observed for the fuzzy dimethyl sulfoxide (DMSO) concentration. 41 

 42 

 43 
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membership function; α-cuts concept 45 
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1. Introduction 47 

It is quite common to model biological and engineering processes as deterministic 48 

phenomena. However, simulations of physical problems that occur in nature are associated with 49 

some uncertainties. They are caused, for example, by the parameters adopted in the model, 50 

which are determined experimentally and that the measurements depend on the condition, sex, 51 

and quality of the acquired samples 0. 52 

Two approaches can be distinguished for considering uncertain variables in the model: 53 

probabilistic and non-probabilistic techniques. The first is based on modelling the 54 

characteristics of uncertainty through the use of probability distributions that describe how a 55 

given random variable might behave. The aim of probabilistic techniques is to predict outcomes 56 

under uncertainty. However, their effectiveness is related to access to relevant empirical data 57 

obtained for a given parameter, which can be a limitation to their use [23],[29].On the other 58 

hand, non-probabilistic methods include fuzzy set theory and interval set theory. In fuzzy set 59 

theory, imprecise variables that are elements of the set are assigned a membership function that 60 

determines the degree of membership in the set. The membership function can be described by 61 

a linear function, such as a triangular or trapezoidal function, or by more complex relationships, 62 

for example, a Gaussian function or a bell function [2],[16],[23]. Fuzzy set theory was first 63 

proposed by Zadeh in 1965 [34]. 64 

Slightly different definitions are given to inaccurate parameters in interval set theory. The 65 

interval number is represented by an interval with a given specified lower and upper limit 66 

[16],[23]. This concept was invented by Moore in 1966 [19]. 67 

Let us introduce some information on cryopreservation. This is a process in which the 68 

biological activity of biological material is reduced by lowering the temperature. The purpose 69 

is to preserve samples in such a way that when they are rewarmed, their physiological activities 70 

are restored [31],[35]. 71 

During cryopreservation, there is a possibility of cell or tissue damage. This is caused, for 72 

example, by ice crystallisation or osmotic stress. To eliminate this risk, the cooling (heating) 73 

rate is properly regulated and cryoprotective agents (CPAs) are introduced. The most common 74 

CPAs are glycerol, dimethyl sulfoxide (DMSO), ethylene glycol, propylene glycol, etc. 75 

[11],[12]. 76 

Depending on the cooling rate and the CPA concentration used, cryopreservation can be 77 

performed by different methods. Conventional slow freezing, for example, is characterised by 78 

a low cooling rate (approximately 1 °C/min according to Mazur [17]) and a low CPA 79 



 

 

concentration. Vitrification, on the other hand, involves rapidly cooling the sample to achieve 80 

amorphous ice instead of ice crystallisation. This process continues at high CPA concentration 81 

[11],[26]. 82 

Other cryopreservation techniques are worth mentioning. The liquidus-tracking (LT) 83 

method, for example, involves controlling the cooling rate and CPA concentration to maintain 84 

the temperature in the sample above the melting point, which is altered by the presence of CPA 85 

[13],[26]. 86 

Cryopreservation is a complex multi-physical problem with coupled transport phenomena. 87 

The mathematical model includes a description of heat flow and mass transfer associated with 88 

molecular diffusion, as well as osmotic transport (microscale process) [15],[26],[31],[33]. 89 

The paper contains a numerical simulation of the cryopreservation process for a sample made 90 

of articular cartilage. The thermal processes occurring during the cryopreservation were 91 

examined using the Fourier equation. Furthermore, mass transfer (molecular diffusion) was also 92 

analysed applying an equation based on Fick's laws. The study does not consider the 93 

phenomenon of osmotic transport. Similar analyses using a deterministic model can be found 94 

in the literature [15],[33]. However, there are also uncertainties in the cryopreservation model. 95 

Our previous work used interval set theory [22],[24],[26],[27] and fuzzy set theory [23],[26], 96 

where a triangular or trapezoidal membership function was introduced. In this study, simulation 97 

was performed for fuzzy thermophysical parameters described by a Gaussian membership 98 

function, which is a novel approach. The obtained fuzzy results were compared with those for 99 

a triangular membership function. For the preparation of the numerical model, the finite 100 

difference method (FDM) was implemented. 101 

This paper is divided into four chapters. The first chapter provides an introduction, while the 102 

second chapter describes the materials selected for the analysis and the methods, which include 103 

a heat and mass transfer model and a numerical model. The next chapter presents computational 104 

examples. The final chapter contains the conclusions. The study is completed with an Appendix 105 

containing the basics of fuzzy numbers and a description of the α-cuts. 106 

2. Methods 107 

The study analysed the heat and mass transfer macroscopically in a biological sample during 108 

the cryopreservation process. It simulated the cooling process performed according to the LT 109 

protocol developed by Pegg et al. [20]. The LT protocol involves eight steps, during which the 110 

temperature and concentration of the bath solution are adjusted to prevent the solidification 111 

process in the sample by changing its melting point in a controlled manner. The melting point 112 



 

 

is influenced by CPA, which enters the extracellular matrix of the sample from the bath solution. 113 

Taylor and Hunt [28] and Pegg et al. [20] propose a CPTes2 solution that consisting mainly of 114 

water, DMSO, and also KCl (a potassium-rich mixture). Our research only investigated changes 115 

in the concentration of DMSO. 116 

Figure 1a shows a schematic of an example cryopreservation device using the LT protocol 117 

invented by Wang et al. [30]. The study considered the computational domain (Ω) of an 118 

axisymmetric sample (cf. Figure 1b).  119 

 120 

 

 

(a) (b) 

Figure 1. Simplified scheme of device to cryopreservation by LT protocol (a) and scheme of 121 

sample computation domain (b) 122 

 123 

2.1. Heat and mass transfer model 124 

Changes in temperature distribution in the computational domain were calculated using the 125 

Fourier equation [3],[8]: 126 

 127 

 𝑐̃𝑉
𝜕𝑇̃(𝑋,𝑡)

𝜕𝑡
= ∇(𝑘̃∇𝑇̃(𝑋, 𝑡)) + 𝑄(𝑋, 𝑡), (1) 128 



 

 

 129 

where 𝑇̃ is the fuzzy temperature, X refers to the coordinate system, t is the time, Q is the heat 130 

source 𝑐̃𝑉 and 𝑘̃ represent the fuzzy thermophysical parameters such as the fuzzy volumetric 131 

specific heat capacity and fuzzy the thermal conductivity, respectively.  132 

For the axisymmetric problem considered in our study, Equation (1) can be expressed: 133 

 134 

 𝑐̃𝑉
𝜕𝑇̃(𝑟,𝑧,𝑡)

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
(𝑘̃𝑟

𝜕𝑇̃(𝑟,𝑧,𝑡)

𝜕𝑟
) +

𝜕

𝜕𝑧
(𝑘̃

𝜕𝑇̃(𝑟,𝑧,𝑡)

𝜕𝑧
), (2) 135 

 136 

where r and z are the cylindrical coordinates. The heat source Q is neglected in further 137 

considerations because articular cartilages do not have blood or lymphatic vessels and therefore. 138 

The mathematical model of heat transfer was completed for initial-boundary conditions 139 

[27],[33]: 140 

 141 

 {

Γ1 and Γ4: −𝑘̃𝒏 ⋅ ∇𝑇̃(𝑟, 𝑧, 𝑡) = 𝛼Γ[𝑇̃(𝑟, 𝑧, 𝑡) − 𝑇𝑏𝑎𝑡ℎ],

Γ2 and Γ3: −𝑘̃𝒏 ⋅ 𝛻𝑇̃(𝑟, 𝑧, 𝑡) = 0,

𝑡 = 0 𝑇̃(𝑟, 𝑧, 0) = 𝑇0,

 (3) 142 

 143 

where n is the normal vector to the boundary, αΓ is the natural convection heat transfer 144 

coefficient, Tbath is the temperature of the surrounding medium (a bathing solution), T0 is the 145 

initial temperature. 146 

The relationship describing the mass transfer between external medium and extracellular 147 

solutions of the cell, which is named as the molecular diffusion, is the diffusion equation based 148 

on Fick's law: 149 

 150 

 
𝜕𝑐̃𝑑(𝑋,𝑡)

𝜕𝑡
= ∇[𝐷̃(𝑇̃)∇𝑐̃𝑑(𝑋, 𝑡)], (4) 151 

 152 

where 𝑐̃𝑑 is the fuzzy molar concentration, 𝐷̃ is the fuzzy molecular diffusion coefficient. The 153 

subscript d represents the DMSO as CPA. 154 

After conversion of Equation (4) for the axisymmetric problem [3],[6],[7]: 155 

 156 

 
𝜕𝑐̃𝑑(𝑟,𝑧,𝑡)

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
(𝐷̃(𝑇̃)𝑟

𝜕𝑐̃𝑑(𝑟,𝑧,𝑡)

𝜕𝑟
) +

𝜕

𝜕𝑧
(𝐷̃(𝑇̃)

𝜕𝑐̃𝑑(𝑟,𝑧,𝑡)

𝜕𝑧
). (5) 157 

 158 



 

 

Please note that the fuzzy diffusion coefficient depends on temperature, which confirms that 159 

the mathematical model of cryopreservation represents a multi-physics coupled problem . The 160 

diffusion coefficient can be calculated from the Einstein-Stokes equation [4],[18]: 161 

 162 

 𝐷̃(𝑇̃) =
𝑘𝐵𝑇̃(𝑟,𝑧,𝑡)

6π𝑟𝑠μ
, (6) 163 

 164 

where kB is the Boltzmann constant (kB = 1.38×10-23 J·K-1), rs is the radius of the spherical 165 

particle, μ is the dynamic viscosity. 166 

The mass transport model also includes initial-boundary conditions [27]: 167 

 168 

 {

Γ1 and Γ4: 𝑐̃𝑑(𝑟, 𝑧, 𝑡) = 0.9𝑐𝑏𝑎𝑡ℎ,

Γ2 and Γ3: −𝒏 ⋅ 𝐷̃(𝑇̃)∇𝑐̃𝑑(𝑟, 𝑧, 𝑡) = 0,

𝑡 = 0: 𝑐̃𝑑(𝑟, 𝑧, 0) = 𝑐
0,

 (7) 169 

 170 

where c0 is the initial concentration, cbath is the concentration of the surrounding medium (a 171 

bathing solution). The 0.9 factor reflects the mass transfer between the domain Ω and the 172 

surrounding medium. 173 

2.2. Numerical model 174 

The numerical model was prepared applying the finite difference method (FDM) considering 175 

fuzzy numbers theory (see Appendix). An explicit scheme was used to analyse transport 176 

phenomena for unsteady state [18]. 177 

A time mesh was established with a constant step, defined by Δt = t f-1 – t f.  The grid for 178 

computational domain (Ω) was created based on the five-point star illustrated schematically in 179 

Figure 2, where h1 and h2 represent the mesh step in the r- and z-direction, respectively, node 180 

(i, j) is the central node. This concept assumes that boundary nodes are located at a distance of 181 

0.5h1 and 0.5h2 from the edge. [18]. 182 

 183 



 

 

 184 

Figure 2. Five-points star 185 

 186 

The idea of FDM is to convert differential equations into algebraic equations by replacing 187 

the appropriate differential quotients. Different types of differential quotients can be consulted 188 

in the literature [26].  189 

By substituting the relevant relations into Equation (2), and after transformation, the 190 

following formula for internal nodes was obtained [26]: 191 

 192 

 𝑇̃𝑖,𝑗
𝑓
= 𝑇̃𝑖,𝑗

𝑓−1
+
Δ𝑡

𝑐̃𝑉
[∑

Φ𝑒

𝑅̃𝑒
𝑓−1 (𝑇̃𝑒

𝑓−1
− 𝑇̃𝑖,𝑗

𝑓−1
)4

𝑎=1 ], (8) 193 

 194 

where i = 2, 3, …, n – 1 and j = 2, 3, …, m – 1, n and m are the number of nodes, a corresponds 195 

to e = {(i, j + 1); (i, j – 1); (i + 1, j); (i – 1, j)}, 𝑅̃𝑒 and Φe is the fuzzy thermal resistance and the 196 

shape function, respectively, where: 197 

 198 

 

𝑅̃𝑖,𝑗−1
𝑓−1

=
0.5ℎ1

𝑘̃
𝑖,𝑗
𝑓−1 +

0.5ℎ1

𝑘̃
𝑖,𝑗−1
𝑓−1 , 𝑅̃𝑖,𝑗+1

𝑓−1
=

0.5ℎ1

𝑘̃
𝑖,𝑗
𝑓−1 +

0.5ℎ1

𝑘̃
𝑖,𝑗+1
𝑓−1 ,

𝑅̃𝑖−1,𝑗
𝑓−1

=
0.5ℎ2

𝑘̃
𝑖,𝑗
𝑓−1 +

0.5ℎ2

𝑘̃
𝑖−1,𝑗
𝑓−1 , 𝑅̃𝑖+1,𝑗

𝑓−1
=

0.5ℎ2

𝑘̃
𝑖,𝑗
𝑓−1 +

0.5ℎ2

𝑘̃
𝑖+1,𝑗
𝑓−1 ,

 (9) 199 

 200 

and 201 

 202 

 Φ𝑖,𝑗−1 =
𝑟𝑖,𝑗−0.5ℎ1

𝑟𝑖,𝑗ℎ1
, Φ𝑖,𝑗+1 =

𝑟𝑖,𝑗+0.5ℎ1

𝑟𝑖,𝑗ℎ
, Φ𝑖−1,𝑗 = Φ𝑖+1,𝑗 =

1

ℎ2
, (10) 203 



 

 

 204 

where ri,j is the radial coordinate of the node (i, j).  205 

In a similar procedure, a numerical model was created for the mass transfer, hence Equation 206 

(5) for internal nodes has the form [26]: 207 

 208 

 (𝑐̃𝑑)𝑖,𝑗
𝑓
= (𝑐̃𝑑)𝑖,𝑗

𝑓−1
+ Δ𝑡∑

Φ𝑒

𝑊̃𝑒
𝑓−1 [(𝑐̃𝑑)𝑒

𝑓−1
− (𝑐̃𝑑)𝑖,𝑗

𝑓−1
]4

𝑎=1 , (11) 209 

 210 

where i = 2, 3, …, n – 1 and j = 2, 3, …, m – 1, 𝑊̃𝑒 is the fuzzy mass diffusion resistance: 211 

 212 

 

𝑊̃𝑖,𝑗−1
𝑓−1

=
0.5ℎ1

𝐷̃
𝑖,𝑗
𝑓−1 +

0.5ℎ1

𝐷̃
𝑖,𝑗−1
𝑓−1 , 𝑊̃𝑖,𝑗+1

𝑓−1
=

0.5ℎ1

𝐷̃
𝑖,𝑗
𝑓−1 +

0.5ℎ1

𝐷̃
𝑖,𝑗+1
𝑓−1 ,

𝑊̃𝑖−1,𝑗
𝑓−1

=
0.5ℎ2

𝐷̃
𝑖,𝑗
𝑓−1 +

0.5ℎ2

𝐷̃
𝑖−1,𝑗
𝑓−1 , 𝑊̃𝑖+1,𝑗

𝑓−1
=

0.5ℎ2

𝐷̃
𝑖,𝑗
𝑓−1 +

0.5ℎ2

𝐷̃
𝑖+1,𝑗
𝑓−1 .

 (12) 213 

 214 

The implementation of differential quotients for boundary nodes was reported in the 215 

literature [26], therefore this element of the numerical model will not be presented here. 216 

A stability condition was also specified for the given model [26]: 217 

 218 

 Δ𝑡 ≤ ∑
𝑅̃𝑒

𝑓−1

Φ𝑒

4
𝑎=1 and Δ𝑡 ≤ ∑

𝑊̃𝑒
𝑓−1

Φ𝑒

4
𝑎=1 . (13) 219 

3. Results  220 

Our study modelled the cryopreservation process for a homogeneous biological sample made 221 

of articular cartilage with dimensions H = 1×10-3 m and R = 3×10-3 m (see Figure 1b). The 222 

thermophysical parameters were introduced as fuzzy numbers described by a triangular 223 

function and a Gaussian function. For the analysis for triangular fuzzy numbers, the following 224 

parameter values were introduced: 𝑐̃𝑉 = (3.728×106; 3.924×106; 4.120×106) J·K-1·m-3 and 𝑘̃ = 225 

(0.492; 0.518; 0.544) W·m-1·K-1. For Gaussian fuzzy number, it was assumed that: the mean 226 

values are mcv = 3.924×106 J·K-1·m-3, mk = 0.518 W·m-1·K-1 and standard deviations are σcv = 227 

1.962×104 J·K-1·m-3, σk = 0.026 W·m-1·K-1 for the volumetric specific heat capacity and the 228 

thermal conductivity, respectively [1],[32],[33]. Convection heat transfer coefficient is equal to 229 

αΓ = 525 W·m-2·K-1 [33]. Other parameters used in the simulation were input data characterizing 230 

the chemical properties of CPA (DMSO) in the context of the diffusion phenomenon, which 231 

are rs = 2.541·10−10 m and μ = 1.996·10−3 Pa·s [25],[33]. 232 



 

 

The model was completed with initial conditions, where T0 = 22 °C, c0 = 0 %(w/w) [27],[33]. 233 

However, the values of temperature and DMSO concentration of the bath solution used to 234 

calculate the boundary variables are determined based on Pegg's protocol for cooling, as shown 235 

in Table 1 [20].  236 

For the fuzzy numbers described by the triangular membership function, the simulations 237 

were performed for α = {0; 0.25; 0.5; 0.75; 1}, while for the fuzzy numbers described by the 238 

Gauss membership function, for α = {0.001; 0.15; 0.25; 0.35; 0.45; 0.5; 0.65; 0.75; 0.85; 0.95; 239 

1}. It is also assumed that time step ∆t = 0.005 s and mesh steps h1 = 0.0001 m and h2 = 0.00005 240 

m. 241 

 242 

Table 1. Temperature and DMSO concentration of the bath solution 243 

Step 
Time 

duration 
Temperature of Bath Solution Concentration of Bath Solution 

 t [min] Tbath [°C] cbath [%(w/w)] 

1. 10 22 10 

2. 10 22 20 

3. 30 −5 29 

4. 30 −8.5 38 

5. 30 −16 47 

6. 30 −23 56 

7. 30 −35 63 

8. 30 −48.5 72 

 244 

Figures 3-6 show the results of the simulation, which were collected at point r = 0.00005 m, 245 

z = 0.000475 m. Figure 3 illustrates the fuzzy temperature curves in the selected period of time 246 

(for 20 s of step 3) for different parameters α using triangular (a) and Gaussian (b) membership 247 

function. Figure 4, in analogy to Figure 3, presents the dependence of the fuzzy concentration 248 

of DMSO over a selected period of time (for 20 s of step 3). for different parameters α using 249 

triangular (a) and Gaussian (b) membership function. 250 

 251 



 

 

  

(a) (b) 

Figure 3. Fuzzy temperature in time (for 20 s of step 3, point r = 5×10-5 m,  252 

z = 4.75×10-4 m) for triangular (a) and Gaussian (b) membership functions 253 

 254 

  

(a) (b) 

Figure 4. Fuzzy concentration in time (for 20 s of step 3, point r = 5×10-5 m,  255 

z = 4.75×10-4 m) for triangular (a) and Gaussian (b) membership functions 256 

 257 

l. 258 

Figure 5 depicts the fuzzy temperature at the selected moment of simulation time (10 s at 259 

step 7) obtained for the triangular (a) and Gaussian (b) membership functions. Please note that 260 

the distribution of the variable was approximated from the results for the Gaussian membership 261 

function. Similarly, Figure 6 shows the fuzzy DMSO concentration at a selected moment of 262 

simulation time (10 s at step 7) received for the triangular (a) and Gaussian (b) membership 263 

functions. 264 

 265 



 

 

  

(a) (b) 

Figure 5. Fuzzy temperature at the selected moment of simulation time (10 s at step 7, point  266 

r = 5×10-5 m, z = 4.75×10-4 m) for the triangular (a) and Gaussian (b) membership functions 267 

 268 

  

(a) (b) 

Figure 6. Fuzzy concentration at the selected moment of simulation time (10 s at step 7, point 269 

r = 5×10-5 m, z = 4.75×10-4 m) for the triangular (a) and Gaussian (b) membership functions 270 

 271 

Table 2 compares the obtained concentration for the triangular and Gaussian membership 272 

functions with the experimental data from the literature [20]. The first two columns show the 273 

obtained fuzzy temperature results for the triangular and Gaussian membership functions. It can 274 

be seen that the given fuzzy temperatures coincide with the bath solution temperatures (compare 275 

with Table 1).The next sections of the table show a comparison of the fuzzy DMSO 276 

concentration in the cellular matrix described by the triangular and Gaussian membership 277 

functions with the experimental results. For the DMSO concentration, there are differences 278 

between the simulation results and the experimental data, as shown by the calculated relative 279 



 

 

error, the highest value of which is 15.82% (step 8) and the lowest value of which is 0.06% 280 

(step 4). 281 

 282 

Table 2. Comparison of results with experimental data 283 

Step 

Fuzzy 

temperature 

for α = 0  

(triangular  

m. f.),  

𝑇̃ [°C] 

Fuzzy 

temperature  

(Gaussian  

m. f.),  

𝑇̃ [°C] 

Fuzzy 

concentration  

for α = 0  

(triangular  

m. f.),  

𝑐̃𝑑 [%(w/w)] 

Fuzzy 

concentration 

(Gaussian  

m. f.),  

𝑐̃𝑑 [%(w/w)] 

Experimental 

data, cd 

[%(w/w)] 

Relative 

error, 

δ [%] 

1 
[22.0000; 

22.0000] 

m = 22.0000 

σ = 0.0000 

[7.8386; 

7.8386] 

m = 7.8386; 

σ = 0.0000 
– – 

2 
[22.0000; 

22.0000] 

m = 22.0000 

σ = 0.0000 

[16.7228; 

16.7228] 

m = 16.7228 

σ = 0.0000 
16.3 ± 1.3 2.59 

3 
[−5.5120;  

−4.5355] 

m = −5.0454 

σ = 0.6996 

[26.0787; 

26.0792] 

m = 26.0790 

σ = 3.55×10-4 
24.5 ± 1.1 6.44 

4 
[−9.3704;  

−7.7104] 

m =  −8.5773 

σ = 1.1893 

[34.1789; 

34.1798] 

m = 34.1793 

σ = 5.95×10-4 
34.2 ± 0.9 0.06 

5 
[−17.6384;  

−14.5136] 

m = −16.1454 

σ = 2.2386 

[42.2743; 

42.2762] 

m = 42.2752 

σ = 0.0013 
41.7 ± 3.3 1.38 

6 
[−25.3552;  

−20.8633] 

m = −23.2090 

σ = 3.2180 

[50.3691; 

50.3722] 

m = 50.3705 

σ = 0.0023 
47.8 ± 2.8 5.38 

7 
[−38.5840;  

−31.7485] 

m = −35.3181 

σ = 4.8969 

[56.6669; 

56.6719] 

m =  56.6692 

σ =  0.0037 
52.2 ± 1.3 8.56 

8 
[-53.4664;  

−43.9944] 

m = −48.9408 

σ = 6.7857 

[64.7393; 

64.7516] 

m = 64.7449 

σ = 0.0093 
55.9 ± 2.9 15.82 

m. f. – membership function 284 

4. Discussion 285 

To begin with, it is worth examining the results in Figures 3-6 and the Table 2. It can be seen 286 

that the temperature distribution in the sample stabilises relatively quickly and reaches the value 287 

of the bath solution (cf. Figure 3). In the case of a change in DMSO concentration, a continuous 288 

increase is observed without any apparent stabilisation as in the case of the temperature curve 289 

(cf. Figure 4). In addition, it is noticeable in the graphs in Figures 3 and 4 that the smaller the 290 

value of the parameter α, the narrower the width of the interval. From Figures 5 and 6 it can 291 

also be observed that the value of parameter α affects the width of the interval. Similar 292 



 

 

conclusions about the effect of the parameter α on the distribution of a given quantity described 293 

as a fuzzy number are provided, for example, in the dissertation [26]. This thesis considers 294 

different computational problems for the cryopreservation process applying fuzzy numbers 295 

described by triangular and trapezoidal membership functions. 296 

In this study, numerical simulations were performed for fuzzy thermophysical parameters 297 

described by a Gaussian membership function, which is a novel approach (in [21],[23],[26] 298 

only the triangular and trapezoidal membership function are presented). The results obtained 299 

were compared with those for the triangular membership function (see Table 2 and Figures 5-300 

6). Triangular fuzzy numbers have sharp and linear membership boundaries, which makes them 301 

easier to implement. The Gaussian membership function, on the other hand, has smooth 302 

boundaries and tends asymptotically to zero. Gaussian fuzzy numbers are more complex to 303 

calculate due to the exponential nature of the membership function. It can be assumed that it is 304 

worth using them to model probabilistic phenomena. The use of Gaussian fuzzy numbers is 305 

certainly an interesting extension of the research topic dealt with by the authors of this paper. 306 

On the other hand, analysing Table 2, it is noticeable discrepancies between numerical results 307 

and experimental data. Referring to previous articles, it can be suggested that it is worthwhile 308 

to analyse, for example, the mathematical model, the calculated values of the diffusion 309 

coefficient, as well as the introduced thermophysical parameters. A similar study of 310 

cryopreservation using the LT protocol and the deterministic thermophysical parameters 311 

presents Yu et al. [33]. However, Yu et al. in their assumptions determined that the extracellular 312 

matrix of articular cartilage is a porous and isotropic material. As a consequence, the diffusion 313 

coefficient depends on the properties of the porous media, such as the tortuosity. This 314 

assumption can consequently lead to more accurate numerical simulation results. Articular 315 

cartilage as a porous material is also described in the work of Behrou et al. [1], who distinguish 316 

the liquid and solid phases in the tissue, and explore the effect of temperature on its properties. 317 

 318 

5. Conclusion 319 

This paper presents the results of a simulated cryopreservation of a biological sample. The 320 

cryopreservation of an articular cartilage sample was modelled using the LT protocol. This 321 

approach allows the temperature and concentration to be controlled in order to avoid the 322 

formation of ice crystals which would lead to the destruction of the biological sample. Due to 323 

the imprecise nature of the thermophysical parameters, they were introduced as fuzzy numbers 324 

described by a triangular and a Gaussian membership function. It should be noted that Gaussian 325 



 

 

fuzzy numbers do not have the sharp interval boundaries that characterise triangular numbers. 326 

Therefore, the Gaussian membership function works well for experimental data where the mean 327 

and standard deviation are known. Triangular and Gaussian fuzzy numbers also share common 328 

characteristics. Using the α-cut concept, the width of the interval is widest for α = 0 and 329 

narrowest for α = 1 (is equal to 0). 330 

The obtained fuzzy concentrations and temperatures in eight stages of the LT protocol for 331 

triangular and Gaussian membership functions were compared with experimental data taken 332 

from the literature. The calculated fuzzy temperatures are consistent with the temperature 333 

values occurring in the LT protocol. Larger differences between the experimental data and the 334 

calculated values are observed for the fuzzy DMSO concentration, where the maximum relative 335 

error is 15.82%. It is suggested that this is due to an inappropriate selection of thermophysical 336 

parameters or a model describing the diffusion coefficient. 337 
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Appendix 341 

Sets Ã of fuzzy numbers are sets in which each element x is assigned a relevant membership 342 

function [5],[9],[21]: 343 

 344 

 Ã = {(𝑥, μÃ(𝑥)); 𝑥 ∈ 𝕏}, (A.1) 345 

 346 

where μÃ is the membership function, which takes the value from 0 to 1. Fuzzy numbers which 347 

belong to a set can be described by different membership functions. In our study, the triangle 348 

membership function described as a straight line and the Gaussian membership function were 349 

implemented. 350 

The membership function for the triangular fuzzy number 𝑎̃ = (𝑎−, 𝑎0 , 𝑎
+) is expressed by 351 

the relation [10],[21]: 352 

 353 

 μ𝑎̃(𝑥) =

{
 
 

 
 

0, 𝑥 < 𝑎−,
𝑥−𝑎−

𝑎0−𝑎−
, 𝑎− ≤ 𝑥 ≤ 𝑎0,

𝑎+−𝑥

𝑎+−𝑎0
, 𝑎0 ≤ 𝑥 ≤ 𝑎+,

0, 𝑥 > 𝑎+,

 (A.2) 354 



 

 

 355 

where 𝑎0, 𝑎−, 𝑎+ are the core of the number and the left and right ends of the fuzzy number, 356 

respectively. 357 

On the other hand, the Gaussian membership function for a fuzzy number 𝑎̃ = (𝑚𝑎 , σ𝑎) has 358 

the form [14]: 359 

 360 

 μ𝑎̃(𝑥) = 𝑒𝑥𝑝 [
−(𝑥−𝑚𝑎)

2

2σ𝑎
2 ], (A.3) 361 

 362 

where ma, σa denote the mean value and standard deviation of data set a, respectively. 363 

The α-cut for a given fuzzy set Ãα is defined as the set of all elements Ã whose membership 364 

function is greater than α [5],[10]: 365 

 366 

 Ãα = {𝑥 ∈ 𝕏: μÃ(𝑥) ≥ 𝛼}. (A.4) 367 

 368 

As a consequence, a fuzzy number is calculated as the sum of all α-cuts: 369 

 370 

 Ã = ∑ αα∈[0,1] Ãα. (A.5) 371 

 372 

Then the fuzzy numbers are expressed as closed intervals, where for triangular fuzzy 373 

numbers it is given as [21]: 374 

 375 

 𝑎̃𝛼 = [(𝑎0 − 𝑎
−)α + 𝑎−, (𝑎0 − 𝑎

+)α + 𝑎+], (A.6) 376 

 377 

and for fuzzy numbers described by Gaussian membership function [14]: 378 

 379 

 𝑎̃α = [𝑚𝑎 − 𝜎𝑎√−2 ln α ,𝑚𝑎 + 𝜎𝑎√−2 ln α ]. (A.7) 380 
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