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Abstract: Background: The aim of this study was to investigate the feasibility of using Long 33 

Short-Term Memory (LSTM) neural networks to predict Taekwondo kick force from data 34 

obtained by inertial measurement unit (IMU) sensors, providing a cost-effective alternative to 35 

traditional force plates in sports biomechanics. Methods: IMU (Noraxon Ultium) data from 13 36 

International Taekwon-do Federation (ITF) athletes (9 training, 4 validation) across genders 37 

and skill levels (expert in training, expert/advanced in validation) were collected. Sensors were 38 

attached to a foot, shank, and tight kicking leg. Athletes performed turning kicks in diverse 39 

stances towards a padded force plate (2000 Hz) attached to a wall. LSTM models were trained 40 

to predict kick force value, and trained on capturing the IMU data from sensors placed on the 41 

lower limb. Results: The trained LSTM models showed accuracy on the training data (R-square 42 

values 0.972 - 0.978). Feature validity analysis highlighted the importance of ankle dorsiflexion 43 

in shaping the model score. Model performance on the validation dataset was less consistent, 44 

ranging from good accuracy (RMSE 6.91) to poor accuracy (RMSE over 30), depending on the 45 

participant tested. Conclusions: This study demonstrated the potential of LSTM models 46 

combined with IMU data to predict Taekwondo kick forces. Although the validation 47 

performance indicated the need for further model refinement or the inclusion of additional input 48 

variables, the results highlighted the feasibility of predicting force values without relying on a 49 

force plate. This approach could enhance the accessibility of field studies conducted outside 50 

laboratory settings. 51 
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1. Introduction 57 

Taekwon-do is a dynamic martial art that relies heavily on complex biomechanical movements 58 

[5, 27]. Taekwon-do techniques involve the sequential energy transfer from larger body 59 

segments (hips, torso) to smaller segments (arms, legs) [3]. Among these techniques, rotational 60 

kicks are particularly challenging because they require precise coordination of spatio-temporal 61 

parameters such as speed, acceleration, and joint alignment to generate maximum force [11, 62 

23]. Accurate measurement of the force produced during such kicks is crucial for performance 63 

analysis, injury prevention, and training optimization [25]. Traditionally, this force is measured 64 

using force plates, which, although highly accurate, are expensive, cumbersome, and limited to 65 



 

 

laboratory environments. Consequently, there is growing interest in alternative solutions that 66 

can measure or predict kick force in real-world settings [29]. 67 

In recent years, statistical computing based on Machine Learning (ML) has become more 68 

accessible due to the availability of many ready-made libraries. In martial arts, ML applications 69 

mainly focus on two key areas: (1) using models to detect or predict movement and combat 70 

performance [4, 35], and (2) performing advanced analysis to discover complex relationships 71 

in sensor signals (treated as time-series data) or to prevent injuries [6, 20-22]. To support such 72 

studies, inertial measurement units (IMUs) [14] have emerged as a promising solution for 73 

capturing spatiotemporal parameters of athletic movements. IMUs are lightweight, portable 74 

devices that can record acceleration, angular velocity, and orientation data, making them 75 

particularly well-suited for biomechanical research conducted outside controlled laboratory 76 

environments. 77 

Two primary approaches can be used to predict desired kinematic variables in martial arts 78 

biomechanics. The first approach utilizes standard descriptive statistics to extract specific 79 

features from the acquired data, followed by predictive modeling using techniques such as 80 

regression analysis, K-Nearest Neighbors (KNN), or Support Vector Machines (SVM) [13, 14]. 81 

The second approach analyzes the entire time-series data, treating captured motion and 82 

associated variables as signals over a defined period to predict the target variable. Long Short-83 

Term Memory (LSTM) models, in particular, show significant potential for analyzing complete 84 

motion sequences, such as full kick executions, without the need to manually extract key 85 

features [14]. While LSTMs demand substantial computational resources and larger datasets 86 

for optimal performance, they offer great promise for applications like kinetic analysis, injury 87 

prediction, and performance optimization. By capturing temporal dependencies within 88 

sequences, LSTMs provide deeper insights into complex biomechanical movements [1, 34, 36]. 89 

Furthermore, inspecting feature importance within machine learning models is an established 90 

method for gaining a better understanding of the data and its underlying patterns [28]. Together, 91 

these approaches highlight the potential of machine learning to advance biomechanical research 92 

and enhance martial arts training methodologies. This study aims to evaluate the feasibility of 93 

using an LSTM model to predict the force values of Taekwon-do turning kicks based on 94 

spatiotemporal parameters collected from IMU sensors. Specifically, it seeks to: (1) investigate 95 

the determinants of force generation by analyzing the importance of features within the LSTM 96 

models, and (2) evaluate the model's predictive performance on data outside the training set, 97 

thereby assessing its potential for practical applications. 98 

 99 



 

 

2. Materials and Methods 100 

2.1. Participants 101 

The study involved 13 athletes: 9 participants (5 females, 4 males) provided training data for 102 

the model, while 4 participants (3 males, 1 female) were used for testing its accuracy on new 103 

data (Table 1). All participants were master-level athletes with over 5 years of experience, 104 

except for two underage testers (16 years old, blue belts, advanced level). All participant 105 

declared that they preferred kicking leg is right. Parental consent was obtained for minors, while 106 

adults signed consent themselves. The study was approved by the Human Subjects Research 107 

Committee of Jan Długosz University (KE-O/4/2022), meeting ethical research standards. 108 

 109 

Table 1. Characteristics of the participants (mean ± standard deviation, minimum and maximum 110 

values). 111 

Parameter 
Age 

[years] 

Body mass 

[kg] 

Body  

Height [cm] 

Age 

[years] 

Body 

Weight [kg] 

Body 

Height [cm] 

Female Model (N = 5) Outside (N = 1) 

Mean ± sd 28 ± 5.34 64.2 ± 6.5 163 ± 7.21 16 63 169 

(Min, Max) (24, 37) (57, 72) (152, 170)    

Male Model (N = 4) Outside (N = 3) 

Mean ± sd 
29.3 ± 

9.18 
77 ± 8.12 

180.3 ± 

1.71 

17.3 ± 

2.31 
70 ± 4.36 

176.7 ± 

4.51 

(Min, Max) (24, 43) (72, 89) (178, 182) (16, 20) (67, 75) (172, 181) 

 112 

2.2. Techniques description 113 

The turning kick is a dynamic Taekwon-do technique relying on angular momentum initialized 114 

by core rotation driven by the hip muscles, transferring torque through the body to the kicking 115 

leg. The knee flexes to reduce the moment of inertia, allowing for greater angular velocity, 116 

before extending rapidly to maximize foot velocity. Two variations were analysed: 117 

1. The sports stance: A flexible stance used in sparring, prioritizes mobility and adaptability 118 

with no formal restrictions, allowing practitioners to adjust their positioning based on 119 

situational demands. The dorsal foot (instep) is typically used as the striking surface for the 120 

turning kick [30]. 121 

2. The traditional stance (L-Stance or Niunja Sogi in ITF Taekwon-Do) is an “L”-shaped 122 

stance used for power-breaking. The front foot points forward, the rear foot is perpendicular, 123 

and the back heel aligns with the front instep. This stance allows greater torso rotation, 124 



 

 

critical for generating power in strikes and kicks. Typically used in board-breaking 125 

demonstrations, it prioritizes maximum force, with the plantar foot (sole) as the striking 126 

surface [30]. 127 

 128 

2.3. Setup and protocol 129 

A combined method was used to measure impact forces and segment kinematics during kicks. 130 

A padded force plate (AMTI, model MC12-2K, 2000 series, Watertown, MA, USA) served as 131 

the target, measuring ground reaction forces in three dimensions synchronized with a motion 132 

capture system (Noraxon, MR 3.18, Scottsdale, AZ, USA) for precise timing. 133 

For kinematic analysis, three wireless Inertial Measurement Units (IMUs) - Noraxon Ultium 134 

(2000 Hz, 4000 g) were placed on the kicking foot (the lateral malleolus), shank, and thigh. 135 

Both devices data transfer was synchronized using add-on MyoSync, responsible for data 136 

synchronization and integrity of signals over time. 137 

After a 10-minute warm-up of dynamic stretches and shadow kicks (kicks performed without a 138 

target), sensors were attached, and participants performed five maximal kicks per condition 139 

with one-minute rest intervals and alternating legs. Each participant completed 40 kicks (5 reps 140 

x 4 conditions x 2 legs). 141 

Thus, the data set included 90 strikes per technique (9 participants x 2 legs x 5 strikes). 142 

Validation involved predicting 40 strikes for the sports kick and 30 for the traditional version, 143 

ensuring minimal fatigue or learning effects. 144 

 145 

2.4. Data collection 146 

For each participant, five strikes per kicking technique were recorded. Data from the Noraxon 147 

MR 3.18 system (with MyoMotion module) was exported to Excel in *.slk format, then 148 

converted to *.xlsx for analysis. Using Python libraries (pandas, numpy, matplotlib, scipy), 149 

acceleration data was processed, converting units from milli-g to m/s². Force peaks were 150 

detected (threshold: 300 N), and filtering isolated the kicks. Each peak was segmented within 151 

a 200 ms window before and after the maximum force value. Data was visualized, summarizing 152 

event times, peak forces, and resultant accelerations, with individual events saved for further 153 

analysis (Fig. 1). 154 



 

 

 155 

Figure 1. Visualization of peak detection using a sliding window for event segmentation. 156 

 157 

Excel (.xlsx) files containing acceleration and time data were processed to calculate velocity 158 

for each sensor axis using a custom compute_velocity function. The updated files, including 159 

velocity columns, were saved and used for model input or testing. Strike events were identified 160 

using a 12 m/s² acceleration threshold, and key parameters (strike duration, peak force, 161 

accelerations, velocities) were extracted if conditions were met. Results were compiled into a 162 

DataFrame for analysis, descriptive statistics, and model validation. The code is available on 163 

GitHub (https://github.com/Dareczin/tkd_data_preparation_slicing_for_events). 164 

 165 

2.5. Model architecture 166 

This study used an LSTM network to predict the maximum ground reaction force (GRF) from 167 

sequential sensor data. Inputs included standard accelerometer features, along with derived 168 

metrics like resultant acceleration and velocity. The model featured three stacked bidirectional 169 

LSTM layers with 50 hidden units, capturing complex temporal patterns. Dropout 170 

regularization (0.3) was applied to reduce overfitting. 171 

Training used the Adam optimizer (learning rate: 0.001) with Mean Squared Error (MSE) as 172 

the loss function. An 80/20 train-test split was applied, and the model was trained for 20 epochs 173 

with a batch size of 8 to optimize memory usage (32 GB RAM). The trained model and feature 174 

scaler were serialized for future predictions. Feature codes, detailed in Table 2, follow naming 175 

conventions established by the lab, starting at 2. 176 

 177 

Table 2. Overview of the 24 selected features and their descriptions, where x denote 178 

anteroposterior direction, y denote mediolateral direction, z – longitudinal direction 179 

https://github.com/Dareczin/tkd_data_preparation_slicing_for_events


 

 

Feature name Description 

2x, 2y, 2z acceleration along each axis of the foot sensor 

3x, 3y, 3z acceleration along each axis of the shank sensor 

4x, 4y, 4z acceleration along each axis of the thigh sensor 

resultant_acceleration_1 resultant acceleration from 2x, 2y, 2z foot sensor 

resultant_acceleration_2 resultant acceleration from 3x, 3y, 3z shank sensor 

resultant_acceleration_3 resultant acceleration from 4x, 4y, 4z thigh sensor 

velocity_2x, 2y, 2z velocity computed from 2x, 2y, 2z foot sensor for each axis 

velocity_3x, 3y, 3z velocity computed from 3x, 3y, 3z shank sensor for each axis 

velocity_4x, 4y, 4z velocity computed from 4x, 4y, 4z thigh sensor for each axis 

resultant_velocity_1 resultant velocity computed from velocity_2 axes 

resultant_velocity_2 resultant velocity computed from velocity_3 axes 

resultant_velocity_3 resultant velocity computed from velocity_4 axes 

 180 

After training, the model's performance on the test set was evaluated using the R-squared 181 

metric. The model was set to evaluation mode, predictions were generated, and the R-squared 182 

score was calculated. Four models were created for separate kick-stance pairs using the same 183 

code, each run in Jupyter Lab v. 4.11. Figure 2 illustrates the process and algorithm. 184 

 185 

Figure 2. Flowchart of the model development process with parameter configuration. 186 

 187 

Feature importance analysis was performed on the baseline model by shuffling feature values 188 

and running 100 iterations to compare average importance weights across techniques. The 189 

baseline R-square was calculated on the original test set. Then, each feature was permuted 190 

individually, while others remained unchanged. The drop in R-square after each permutation 191 

indicated feature importance, with averages computed similarly. 192 



 

 

Model verification used external data from participants excluded from training. Predictions 193 

involved loading the model, selecting the same features, and excluding Total_GRF (force). 194 

Each event was processed separately, and predictions were compared to actual force values for 195 

specific kicks. Accuracy was evaluated using RMSE for individual participants and the overall 196 

dataset. All models and the corresponding dataset are available on the Zenodo open repository 197 

at https://doi.org/10.5281/zenodo.10895668. 198 

 199 

3. Results 200 

3.1. Descriptive statistics of kicks 201 

Table 3 provides descriptive statistics for two techniques in both styles, based on data from nine 202 

participants included in the model. Since gender was not a factor in the analysis, no division by 203 

gender was necessary. The table presents indices recorded at the moment of peak force, which 204 

is the model's target prediction value. This data offered a reference for analysing feature 205 

importance and understanding how specific variables influence the model, including the impact 206 

of performance variability on training. 207 

 208 

Table 3. Descriptive statistics for the model participants across all kick variations performed at 209 

maximal force (Max Force), including mean ± standard deviation, as well as minimum and 210 

maximum values. 211 

Variable Mean ± sd (Min, Max) 

Turning kick in sport stance version 

Max Force [N] 2005 ± 820 (625, 4228) 

Foot acceleration [m/s2] 142.06 ± 60.56 (30.01, 295.52) 

Shank acceleration [m/s2] 52.93 ± 22.31 (16.26, 136.50) 

Thigh acceleration [m/s2] 60.95 ± 35.78 (12.24, 196.32) 

Foot velocity [m/s] 12.53 ± 3.84 (5.40, 21.00) 

Shank velocity [m/s] 8.42 ± 2.16 (4.18, 14.80) 

Tight velocity [m/s] 8.03 ± 2.75 (1.47, 14.57) 

Turning kick in traditional stance version 

Max Force [N] 1428 ± 566 (513, 3942) 

Foot acceleration [m/s2] 134.15 ± 65.54 (37.54, 305.44) 

Shank acceleration [m/s2] 42.77 ± 13.65 (11.00, 69.59) 

Thigh acceleration [m/s2] 61.39 ± 36.81 (17.77, 177.33) 

Foot velocity [m/s] 10.91 ± 4.12 (2.49, 19.03) 

Shank velocity [m/s] 7.45 ± 1.70 (4.20, 10.64) 

Tight velocity [m/s] 7.60 ± 2.50 (2.89, 15.40) 

 212 

The lowest force values were recorded for the turning kick from a traditional stance, with a 213 

mean of 1427.89 N. Interestingly, in this variation, the IMU data from the thigh exceeded that 214 

from the shank, a distinctive observation. In comparison, the traditional stance generally 215 

https://doi.org/10.5281/zenodo.10895668


 

 

showed lower statistical values than the sports stance, which had a mean force of 2004.71 N. 216 

Although the mean force difference between the two styles was notable, the range of minimum 217 

to maximum values was considerably smaller. 218 

 219 

3.2. Model evaluation with permutated feature importance 220 

3.2.1. Turning kick in sport version 221 

Each model was evaluated independently, beginning with the turning kick in the sports version. 222 

The LSTM model for force prediction achieved a strong baseline R-squared score of 0.972. 223 

Permutation importance analysis identified key velocity-related features, such as the vertical 224 

and rotational components of thigh velocity ('velocity_4y' with a drop to 0.773 and 'velocity_4z' 225 

with a drop to 0.837) and the resultant velocity of the shank ('resultant_velocity_2' with a drop 226 

to 0.763), as critical for accurate force predictions. These features caused substantial declines 227 

in the R-squared score when permuted, highlighting their significance. Additionally, 228 

acceleration features such as '3x' (drop to 0.860) played a notable role. Whereas features such 229 

as '2z' (0.962), '3z' (0.914), and '4z' (0.918), representing accelerations along the z-axis, 230 

exhibited minimal impact on R-square scores when permuted (Fig. 3). 231 

 232 



 

 

Figure 3. R-squared scores for each feature after 100 permutation runs in the kick model (sport 233 

version). 234 

 235 

3.2.2. Turning kick in traditional version 236 

The next model focused on the turning kick in the traditional version, achieving a high baseline 237 

R-square score of 0.978. Permutation importance analysis identified several key features, with 238 

'resultant_acceleration_1' showing the largest drop in R-square score (to 0.711) when permuted, 239 

emphasizing its critical role in accurate force predictions. Additionally, 'resultant_velocity_1', 240 

which was linked to acceleration data, also displayed a noticeable drop (to 0.827). Another 241 

important feature was the rotational axis of the shank sensor's acceleration data '3x', which 242 

dropped to 0.854. Compared to the sports version, this model exhibited fewer features with 243 

significant drops in R-square scores (Fig. 4). 244 

 245 

Figure 4. R-squared scores for each feature after 100 permutation runs in the kick model 246 

(traditional version). 247 

 248 

3.3. Descriptive statistics for outside model participants 249 



 

 

The available data for testing involved 4 participants, with data from only 3 participants being 250 

usable for the turning kick in the traditional version. Descriptive statistics revealed similar 251 

trends in the switching of acceleration/velocity order for the traditional version of the turning 252 

kick, compared to other conditions, which aligned with the data from the model set (Table 4). 253 

 254 

Table 4. Descriptive statistics of kicks for outside model participants across all kick variations 255 

performed at maximal force (Max Force), including mean ± standard deviation, as well as 256 

minimum and maximum values. 257 

Variable Mean ± sd (Min, Max) 

Turning kick in sport stance version 

Max Force [N] 1548 ± 573 (656, 3179) 

Foot acceleration [m/s2] 107.72 ± 41.03 (48.60, 189.18) 

Shank acceleration [m/s2] 62.45 ± 5.91 (27.03, 201.85) 

Thigh acceleration [m/s2] 74.40 ± 57.51 (26.94, 228.02) 

Foot velocity [m/s] 11.35 ± 3.07 (6.61, 16.15) 

Shank velocity [m/s] 9.56 ± 2.08 (6.47, 15.35) 

Tight velocity [m/s] 8.59 ± 3.72 (4.41, 18.82) 

Turning kick in traditional stance version 

Max Force [N] 1631 ± 1182 (545, 5503) 

Foot acceleration [m/s2] 62.51 ± 14.31 (27.49, 82.35) 

Shank acceleration [m/s2] 77.29 ± 32.19 (36.71, 135.72) 

Thigh acceleration [m/s2] 91.32 ± 58.34 (27.76, 197.33) 

Foot velocity [m/s] 8.82 ± 1.24 (6.75, 11.64) 

Shank velocity [m/s] 9.83 ± 2.21 (6.98, 14.08) 

Tight velocity [m/s] 10.57 ± 4.14 (5.89, 17.55) 

 258 

3.4. Model performance for outside model participants 259 

The comparison between observed Max Force values and model predictions showed varying 260 

accuracy across participants and trials (Table 5). Participant 1 exhibited strong performance, 261 

with RMSE values below 50 N, indicating minimal errors. In contrast, Participant 2 had larger 262 

errors, with RMSEs exceeding 100 N in some trials. Dynamic tasks, like Participant 3's trial 263 

with a Max Force of 3031 N, led to significant prediction errors of nearly 2000 N (RMSE = 264 

38.3). Participant 4 showed RMSE values over 20, highlighting the need for model 265 

improvement. In the traditional stance, turning kicks varied in RMSE, reflecting fluctuations in 266 

model accuracy. For Participant 1, dynamic scenarios like the right-leg kick showed large 267 

prediction errors, with a true Max Force of 5502 N predicted as 1582 N (RMSE > 41). 268 

Participant 2 had moderate errors (RMSE between 30.9 and 31.8). Participant 3 displayed 269 

smaller RMSE values in low-force trials but significant overestimations in high-force cases, 270 

such as a true Max Force of 931 N overestimated by over 700 N (RMSE = 27.2). 271 



 

 

 272 

Table 5. Model performance for each participant and condition, presented separately. 273 

Participant Side Mean true values [N] Mean predictions [N] RMSE 

Turning kick in sport stance version 

1 
left 1573 1620 6.91 

right 2703 1465 38.27 

2 
left 867 1915 32.37 

right 1780 2094 17.71 

3 
left 1399 2028 25.08 

right 1535 1320 14.64 

4 
left 1125 2008 29.72 

right 1475 2098 25.62 

Turning kick in traditional stance version 

1 
left 1553 1502 7.18 

right 3321 1603 41.45 

2 
left 1172 1013 31.83 

right 1030 1986 30.92 

3 
left 759 584 13.23 

right 888 1630 27.23 

 274 

4. Discussion 275 

This study aimed to evaluate the feasibility of using an LSTM model to predict the force 276 

values of Taekwondo turning kicks based on spatiotemporal parameters collected from IMU 277 

sensors. Specifically, it sought to: (1) investigate the determinants of force generation by 278 

analyzing the importance of features within the LSTM models, and (2) evaluate the model's 279 

predictive performance on data outside the training set, thereby assessing its potential for 280 

practical applications. 281 

LSTM models are currently used for predicting different variables related to martial arts 282 

for movement prediction [12] or health-related properties of a wider spectrum [19]. As this type 283 

of analysis is quite new, there are not any papers that directly reflect this work. Existing models 284 

aim to recognize specific techniques based on kinematic data. The paper of Barbosa, et al. [2], 285 

reveals high accuracy of movement recognition in taekwondo techniques with the value of 286 

accuracy 0.991 [2]. This value corresponds to the accuracy of the model obtained in this study 287 

in values ranging from 0.972 to 0.984. This is outside justification of method correctness, at 288 

least at the starting point of this model. 289 

 The analysis of external model data often proved inaccurate. The turning kick in the 290 

sports version showed the best performance, with the lowest RMSE values. However, 291 

predictions missing over 1000 N in a range of 600 – 4300 N fail to meet the goal of practical 292 



 

 

training applications, aside from the force plate's immobility issue. Despite limited comparable 293 

studies, we discuss potential reasons for this lack of accuracy. Only one participant 294 

demonstrated that predicting force without a force plate might be feasible, suggesting this 295 

approach holds future potential. 296 

 Participants in the new dataset differed in age and experience from those in the trained 297 

sample, which, in traditional research, would be unacceptable due to the importance of 298 

homogeneity for comparison. However, for the model's practical application, it must adapt to 299 

all training participants, not just those resembling the trained sample. Participant 1, a master-300 

level athlete, initially aligned well with the model but displayed unexpected variability. His 301 

exceptionally powerful right-leg strikes altered the time-series data patterns, leading to poor 302 

predictions. This outcome was unforeseen, as initial indicators suggested compatibility. From 303 

previous studies, Taekwon-do martial arts did not exhibit specific lateralization between lower 304 

limbs in their strikes [31].  305 

Other participants were less experienced and younger, which could have led to differences in 306 

kick kinematics. If their coordination differed, the LSTM model might have been sensitive to 307 

these variations. Since the bidirectional LSTM model relies on both forward and backward 308 

relationships between features processed as signals in windows, any irregular fluctuations 309 

compared to the trained data could result in prediction errors. This hypothesis is supported by 310 

previous studies that have explored differences in the kinematics of the turning (roundhouse) 311 

kick between novices and experts. These differences were not only observed in muscle 312 

activation but also overall kinematic metrics, including the generated force [23].  313 

Participants had the freedom to adjust their distance from the target independently, particularly 314 

in the sports stance. Numerous studies have highlighted the importance of distance in turning 315 

(roundhouse) kicks [7, 9, 10, 15]. Variations in distance are related to the concept of effective 316 

mass, which refers to the utilization of one's body mass in generating force. Insufficient distance 317 

or poor timing at the moment of contact with the target can lead to a decrease in the generated 318 

force values [17, 18, 32]. 319 

The first model explored was the turning kick in the sports version. None of the individual axis 320 

accelerations showed a significant drop in R-squared scores; however, the most important 321 

determinants, according to the permutation feature analysis, were the resultant acceleration of 322 

the shank (resultant_acceleration_2) and the acceleration of the thigh 323 

(resultant_acceleration_3). Since this is a circular motion, the non-linearity of the kick may 324 

explain the lack of dominance of a single axis, with the overall acceleration of these segments 325 

being crucial. Therefore, developing strong flexion strength in the hip and knee joints is 326 



 

 

recommended for this kick, which aligns with findings from Moreira, et al. [26], where 327 

isokinetic strength in these areas was also shown to be important. In contrast to previous studies 328 

on the effects of target kinematics [16, 33], maximum foot velocity was not a critical factor for 329 

overall performance based on its resultant values. However, when analyzing the data for each 330 

axis separately, the vertical component of foot velocity emerged as important. This highlights 331 

the significance of foot dorsiflexion speed in generating kick force. It is recommended that 332 

athletes focus on strengthening the tibialis anterior muscles to enhance dorsiflexion speed as a 333 

key factor in improving kick power. 334 

The permutation feature analysis of the second model reveals noticeable differences in the R-335 

square scores of selected features, supporting the need for separate analyses of the two stances. 336 

The primary difference in the traditional version lies in the contact area with the target. Since 337 

the plantar side of the foot in the metatarsal joint region strikes the shield, the foot must be fixed 338 

in position before contact, leading to different kinematics at the end of the technique execution. 339 

In this model, the most important determinant was the resultant acceleration of the foot 340 

(resultant_acceleration_1), suggesting that the timing of foot position fixation is crucial for 341 

predicting the force of the kick. As a practical application, trainers could use high-speed 342 

cameras (e.g., 100 frames per second or higher) to assess the timing of ankle movements during 343 

this technique. Feature importance analysis does not equate to correlation, so we cannot directly 344 

conclude that later fixation leads to a stronger impact. In this model, shank velocity and 345 

acceleration were less important, but the kinematics of the segments remained significant. This 346 

challenges the assumption of a proximal-to-distal pattern being crucial for the turning kick in 347 

ITF Taekwondo athletes [8, 24]. 348 

Limitations of the study 349 

The permutation feature analysis highlights important technical nuances that trainers should 350 

consider during motor learning. While it identifies key components influencing force 351 

predictions, it also reveals the model's limitations with the current sample, which orders us to 352 

be cautious about strength of those evidence. Testing on new data suggests that the model is 353 

not suitable for general use, possibly due to the small sample size of nine participants or the 354 

need for refinement based on permutation analysis insights. Higher sample size of testing data 355 

outside the model would also help to better understand which group is suitable for using this 356 

models, as single successful assessments indicate that there might be a profile of athletes that 357 

could utilize this solution. Expanding the feature set, using sliding windows, or adjusting model 358 



 

 

parameters could improve performance, but computational constraints, such as a 32 GB 359 

memory limit of device used for training models, restrict batch sizes and cause system errors. 360 

These limitations emphasize the need for further optimization and larger datasets. Additionally, 361 

using more number of sensors could fill the gap in prediction ability of proposed models. 362 

The key takeaway from this paper is that it is indeed possible to train an effective model to 363 

predict the force of a kick without the need for a force plate. The main objective of this study 364 

has been achieved, and we aim to promote the idea of eliminating stationary equipment for 365 

sports analysis conducted outside of laboratory settings. 366 

 367 

5. Conclusions 368 

This study rigorously evaluated the capability of Long Short-Term Memory (LSTM) models to 369 

predict the force of taekwondo kicks using inertial measurement unit (IMU) data. The LSTM 370 

models demonstrated impressive predictive performance, with R-squared values ranging from 371 

0.972 to 0.978 across different kick stances. This suggests a high level of accuracy in capturing 372 

the nuanced dynamics of taekwondo techniques. 373 

Feature importance analysis pinpointed specific kinematic variables - particularly the velocity 374 

of the thigh and the rotational velocity of the shank - as key determinants of kick force. These 375 

insights offer actionable guidance for technique optimization, highlighting the importance of 376 

both segmental velocities and acceleration patterns of the ankle joint motion in generating 377 

powerful kicks. 378 

While these findings are encouraging, the model's predictive accuracy was less consistent when 379 

tested with data from new participants. Differences between predicted and actual force values, 380 

highlighted by RMSE values, indicate limitations in generalization across a broader athlete 381 

spectrum. 382 

Future research should focus on addressing these limitations by expanding the training dataset, 383 

refining model architecture, and incorporating a wider array of kinematic and kinetic variables. 384 

These advancements hold the potential to significantly enhance the predictive power and 385 

broaden the applicability of the model across various sports biomechanics applications. 386 

 387 
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