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Musculotendon forces derived
by different muscle models

MILOSLAV VILIMEK*

Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering,
Czech Technical University in Prague, Czech Republic

The accuracy, feasibility and sensitivity of several different methods for calculating muscle forces during functional activities in hu-
mans were investigated. The upper extremity dynamic system was chosen, where the flexion–extension of elbow joint was studied. To
counteract the redundant mechanisms we adopted optimization criteria with and without models of individual muscles according to their
active and passive properties. Comparisons with known movements solved by inverse dynamics approach and optimization techniques
provided similar results for all optimization criteria. Moreover, if muscle models with active and passive properties are included in these
analyses, it is relatively easy to calculate muscle forces of both agonists and antagonists. These approaches may be used to provide input
data for dynamic FEM stress analysis of bones and bone–implant systems.
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1. Introduction

Muscle forces are considered to be an important sub-
ject of considerations for orthopaedists, biomechanists,
and physical therapists because joint contact forces, as
well as muscle forces, must be estimated in order to un-
derstand joint and bone loading and pathology. The cal-
culation of muscle forces generated during complex ac-
tivities is not trivial. In this study, the use of several
muscle models, with and without active force–length,
force–velocity and passive force length properties, as well
as inverse and forward dynamics approaches were stud-
ied. The technique of dynamic optimization allowed us to
study the tendon and activation dynamics and to examine
the redundant elbow joint problem as the control problem.

2. Methods

For this study the elbow joint musculoskeletal
system was chosen. It consists of the following seven

joint actuators: four flexors (biceps brachii long head
(BIClh), biceps brachii short head (BICsh), brachialis
(BRA) and brachioradialis (BRD)), and three exten-
sors (triceps brachii long, medial and lateral heads
(TRIlh, TRImh, and TRIlt)). Other elbow actuators
were neglected. The elbow joint was selected because
it gave a good visual demonstration and for the sake
of simplification it is possible to say that the elbow
motion is uniplanar and uniarticular. The elbow flex-
ion–extension movement was executed without any
motion in shoulder, hence all the elbow actuators were
modelled as single joint actuators. This redundant
musculoskeletal system was modelled with one degree
of freedom at autonomus variable elbow flexion–ex-
tension angle.

2.1. Musculotendon models

Muscles are the actuators of the neuromusculo-
skeletal system that generates movement. The control
of the complex musculoskeletal system is based on the
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understanding of physical principles of musculoten-
don actuator action. The muscle model used in this
investigation is referred to as the Hill-type model. In
figure 1, the musculotendon complex is presented as
idealized mechanical objects [1], [2]. In contrast to the
models used, for example, in [3] and [4], here the series
elastic element (SEE) was neglected, because the en-
ergy stored in cross-bridges is expected to be very low
compared with the total energy stored in the external
and internal parts of tendon. The muscle is assumed to
consist of two components: an active force generator
and parallel passive component. The model for the
active contractile component is based on the generally
accepted notion that the active muscle force is the
product of three factors: (1) a length–tension relation,
(2) a velocity–tension relation and (3) the activation
level. The passive component includes a parallel elas-
tic element and passive muscle viscosity.

Fig. 1. The Hill-type model of musculotendon complex

Fig. 2. The passive and active force–length relations

A theoretical explanation for the active force–length
relation is based on the microscopic image of muscle and
is elucidated by the sliding filament theory [5]–[7]. This
theory offers an explanation for a generally accepted
notion that when a muscle is completely tetanized, the
active force displays a “parabolic” dependence on fiber
length in a nominal region, 〉〈∈ MMM LLL 00 5.1;5.0 , with
maximum force when MM LL 0= . This nominal region is
an ideal case and in practice can be different for every

single muscle. The passive force–length relation dis-
plays the “exponential” dependence when muscle is
lengthened more than optimum muscle length (equa-
tion (1), figure 2).

The active force–length relation for muscles has
been constructed as parabolic function (equation
(2)) that fits the data reported by [8], [6]. This curve
is then scaled to provide a description for specific
muscle:
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For the force–velocity relation under concentric
and isometric conditions, the hyperbolic relation (the
Hill equation) was used:
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For the force–velocity properties under eccentric
conditions the modified Hill equation (4) proposed by
MASHIMA et al. [9] was applied:
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The muscle force–velocity relation under eccen-
tric, isometric and concentric conditions when muscle
is fully activated is shown in figure 3.

Fig. 3. The force–velocity relation when muscle is fully activated (A)
and when the activation level is a(t) = 0.5 (B)

Both active muscle properties (force–velocity and
force–length properties) must be scaled by activation
level. It is assumed that the passive muscle velocity and
muscle viscosity effect are small, then a total muscle
force is the sum of the passive and active forces
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When the tendon dynamics and both passive and
active properties are included, the muscle model is
expressed by the first-order differential equation

))cos(/()( αMMTTTT LLFKF &&& −= , (6)

where KT is the tendon stiffness [4]. In order to de-
scribe the dependence of muscle activation level a(t)
on excitation level, the activation dynamics was used
in the form of the first-order differential equation

fallrise
2 /)(/)( ττ auuaua −+−=& , (7)

where u(t) is the excitation level of muscle at the time
t, and τrise and τfall are the rise and decay constants of
muscle activation [10].

Some authors use the EMG-driven models, where
the experimentally collected, processed and normal-
ized EMG signal is used as an activation signal. The
muscle models are sometimes used in a much simpler
form, without dynamical properties and force–length
and force–velocity properties, only the driving signal
be included (equations (8) and (9)). The differences
between these models and the computational ap-
proaches will be discussed below.

2.2. Experimental data collection
and inverse dynamics

Elbow flexion and extension movements were re-
corded with the 6-camera 60Hz VICON Motion
Analysis system for two movement speeds (slow,
1.1 rad/sec; fast, 2.8 rad/sec) and two loading condi-
tions (unloading and loading with a 4.2 kg bar-bell).
Simultaneously the electromyographic activity (EMG)
of the elbow joint actuators (BRD, BIClh, TRIlh, and
TRIlt) was recorded using bipolar surface electrodes.
Unprocessed EMG data during maximum voluntary
isometric contraction (MVC) were also collected from
the same muscle. EMG data for MVC were collected
when the muscles fibres subjected to measurements
had assumed the optimum length .0

ML
Raw electromyograms during flexion–extension

movement activities and maximum voluntary isomet-
ric contraction were bandpass-filtered (20–500 Hz),
offset, rectified and smoothed (using a RMS window
of 75 msec). Processed EMG signals were normal-
ized, i.e., divided by the processed MVC values (for
each muscle separately). The same EMG signals as
these recorded for BIClh were associated with the
BRA and BICsh actuators and the averages for TRIlh
and TRIlt signals were associated with TRImh, be-
cause the muscle were very close and it is possible to

assume their similar function in elbow flexion–exten-
sion. The elbow joint net moment Mnet, which repre-
sents the sum of moments from all joint actuators,
both flexors and extensors, was solved using inverse
dynamics.

Inertia properties were calculated using an algo-
rithm based on three inputs, i.e., human weight,
height and gender, for details see [11]. The positions
of anatomically significant limit points (e.g., muscle
attachments) were taken from the Mayo’s study of
anthropometric data [12]. These data were then
scaled using the length of brachium and antebra-
chium from the measured subject. Additionally, the
positions of attachments, muscle volume, mass and
physiological crossectional area (PCSA) were scaled
using the circumference of brachium and antebra-
chium.

2.3. Raw EMG-driven models
and static optimization

One of the possibilities of estimating the force in
a single muscle is the use of EMG as a driving signal.
Here, the suitable muscle models are based on the Hill-
type muscle model (figure 1). The estimated force
does not depend on (imperfect) joint torque calcula-
tion via inverse dynamics and it is computationally
simple enough to be potentially applied in a real time.
The disadvantages of these types of models lie in the
assumptions associated with the input data such as an
EMG signals and the muscle parameters of the model.
The equation

)(0 taFF MM = (8)

represents the non-physiological EMG-driven muscle
model [13], based only on the maximum isometric
muscle force σ⋅= PCSAF M

0 , where σ = 31.8 Ncm–2

is a specific muscle tension [14] and the activation
signal a(t) is a recorded, processed and normalized
EMG. Next equation
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0 tafFF L
MM = (9)

represents the muscle model more physiological than
(8), where act

Lf  is an active force–length factor [15].
Equation (5) is the basis for a physiological EMG-
driven model [16] and considers the factors in terms
of force–velocity fv, force–length act

Lf  and activation
level a(t) of contractile muscle component, force–
length relation pe

Lf  of passive muscle component and
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penalty angle α. This model corresponds to a full Hill-
type muscle model without tendon dynamics and
muscle viscous properties.

All inputs to these three models ((5), (8), (9)) are
obtained under the same experimental conditions. Usu-
ally it is necessary to apply any optimization technique

Fig. 4. The estimated elbow actuators forces during flexion–extension cycle
by muscle model equation (5) and optimization criterion equation (10)

Fig. 5. The estimated elbow actuators forces during flexion–extension cycle
by muscle model equation (5) and optimization criterion equation (11)

Fig. 6. The estimated elbow actuators forces during flexion–extension cycle
by muscle model equation (5) and optimization criterion equation (12)
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to the “optimal” processing of the EMG’s because the
net joint moments calculated based on estimated mus-
cle forces by means of the raw EMG-driven models
with normalized EMG’s as driving signals and the net
joint moments calculated using inverse dynamic tech-
nique are different. If the optimization of the driving
input parameter EMG is used, the results obtained can
be better. Activation signal should be optimized be-
cause during its recording both processing and inter-
pretation may include many errors. Therefore, all three
muscle models were applied to the static optimization
technique. The influence of three different optimizing
criteria was studied: 1. Minimization of activation
squared [17], equation (10). 2. Minimization of muscle
stress cubed [18], equation (11). 3. Minimization of
maximum activation squared, equation (12):

∑
=

=
n

i
iaJ

1

2 , (10)

3

1
∑
=









=

n

i i

M
i

PCSA
FJ , (11)









= ∑

=

n

i
iaJ

1

2)(max . (12)

In all three cases, the optimization problem was to
minimize the objective function J = min over i = 1 – n
actuators, n = 7, with the equality constraints
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where ri is the moment arm of the i-th muscle to the
elbow joint, Mnet is the elbow net moment. The addi-
tional inequality constraint is that all of the musculo-
tendon forces must be positive ( 0≥M

iF ) because
muscles cannot produce compressive forces.

3. Results

Each EMG-driven model used without optimiza-
tion technique gives the values of the net joint mo-
ment that differ from these obtained based on inverse
dynamics approach. Optimization technique was used
to process and set up the weight of activation level
a(t) for each muscle. If the model is simple ((8) and
(9)), the values of the estimated forces are zero for
elbow extensors (co-contractors) and they do not cor-
respond to the measured EMG signals.

A “physiological” muscle model (5) includes also
a passive force–length factor and due to this passive
property it always gives co-contractors forces with
non-zero value (see, for example, figures 4, 5, 6 which
show the results calculated by means of static optimi-
zation approach constrained by the net joint moment
from the specific movement condition – the slow mo-
tion without weight). This statement is valid for each
of three optimization criteria used (equations (10),
(11), (12)), and do not agree with other muscle models
in which all passive and active muscle properties are
not included.

4. Discussion

The main goal of this study was to deal with the
possibilities of estimating musculotendon forces in
multiple muscle systems. The sense of an optimum
method for solving this problem with respect to its
practical usage was studied as well. The musculoten-
don forces will be used as input data for FEM stress
analysis of bones, therefore simple solution should be
maintained and the data obtained must be as authentic
as possible.

A human musculoskeletal system includes redun-
dant multiple-muscle system allowing the perform-
ance of motion. In order to simulate and calculate
muscle forces in terms of engineering problem, this
redundant system must be optimized.

Two “simple” ways for muscle force calculation in
redundant multiple-muscle system are based on: static
optimization and known kinematics (inverse dynamics
technique) without taking account of physiological
and morphological properties. Static optimization and
inverse dynamics technique with manifestation of
muscle forces is based on the Hill-type model, which
includes passive and active muscle properties. It is
also possible to express muscle force taking account
of tendon dynamics and the properties of musculoten-
don, expressed by the first-order differential equation.
The redundant multiple-muscle system as regards the
dynamic properties of musculotendon must be solved
by using the dynamic optimization technique, which is
not trivial. It is possible to solve such a system using
the activation dynamics, and solving the forward mo-
tion of this system is a classical control problem.

The necessary constraints for muscle modelling
are input data concerning such physiological and
morphological properties of muscle as positions of
muscle attachments and significant points of body
segments, PCSA, penalty angle α0, tendon length LT,
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optimum muscle length ML0 , maximum isometric
force MF0 , etc. Most of these parameters are experi-
mentally estimated (measured), especially in the case
where the results (the calculated muscle forces) will
be used as inputs to general calculations of FEM
stress analysis of bones.

The question is: which estimated muscle forces are
better and physiological? Can we get real muscle
forces by optimization? The results are much better
when a muscle model is based on muscle physiology.

4.1. Is the static optimization
a suitable method?

Thus, when the forces generated by all joint mus-
cles, contractors and co-contractors are needed to be
known, the raw static optimization methods alone are
not sufficient. If the muscle function is represented by
equation which defines both active and passive mus-
cle properties, as for example, a Hill-type muscle
model in [16] and [19], the co-contractor forces with
non-zero values can be obtained.

The co-contractors are the muscles being usually
able to lengthten, and activation is usually small. The
passive muscle component and tendon can generate
force when the co-contractor length is greater than op-
timum muscle length. The stiffness of the passive com-
ponent of musculotendon depends on muscle length
and has exponential character. The co-contractor forces
cannot be equal to zero if co-contractors are length-
ened more than the optimum muscle length. There-
fore, static optimization can be a suitable technique
for muscle forces estimation, but the muscle mechan-
ics must be described by equation which takes into
account both active and passive components, for ex-
ample, equation (5).

Here it is found that by this technique both con-
tractors and co-contractors forces can be estimated.

4.2. The necessity of
EMG data collection

The EMG-driven method gives muscle forces with
non-zero values because all the muscles, contractors
and co-contractors, are almost all time activated. In
the case of the co-contractors, the measured activation
is very small, less than 10% of normalized EMG. The
EMG-driven methods usually make use of the muscle
model as regards an active muscle properties or both
active and passive muscle properties.

One of physiological driving factors of muscle
force is EMG, being processed as muscle activation
level ai (t) (EMG normalized by MVC value). The
main problem of these methods is the processing of
the normalized EMG signal to muscle activation
signal. If the normalized EMG signal is used as
activation signal for muscle models, in many cases
the joint moments calculated from the forces esti-
mated by raw EMG-driven models are different
from the net joint moments calculated by using in-
verse dynamics approach. The elbow joint moments
calculated from forces based on raw EMG-driven
models are usually much smaller compared to mo-
ments from inverse dynamics technique. Therefore,
the muscle forces estimated by using raw EMG-
driven models should be optimized, or the activation
(normalized EMG) signal in the Hill-type model is
optimized.

In this study, the combined technique, i.e., the
EMG-driven model with static optimization approach,
was used for muscle force estimation in elbow prob-
lem. At first, the activation input into EMG-driven
model was: i) normalized raw EMG, or ii) EMG sig-
nals processed and modified by optimization, or iii)
unknown variable which was calculated from optimi-
zation. The variant, where an unknown activation
signal was calculated from optimization, was easier
(a complicated experimental measurement of EMG is
necessary) and gave convenient results. Therefore
finally, the EMG signals collected experimentally
were not used for muscle force estimation. The mus-
cle model in terms of all active and passive properties,
such as active and passive force–length relations,
force–velocity relation and activation, model equation
(5), expresses most of the physiological muscle prop-
erties.

Some authors, [19], [16], use the Hill-type models
with the processed EMG as an activation signal
(EMG-driven models). The question arises: Is a prime
necessity to know the muscle activation signal if we
want to arrive at the muscle forces, especially if the
driven signal (processed EMG) is optimized?

The role of the muscle activation signal is to con-
trol an active muscle component. The processed EMG
signal is appropriate to be used as activation signal for
the first approach only. The findings of this study and
the answer to the above question are that for the
EMG-driven models with the optimization technique
it is not necessary to know muscle activation and re-
corded and processed EMG, omitting its difficult ex-
perimental collection for some muscles.

All of these models are exactly valid for the ac-
cepted simplifications and assumptions only. Real
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forces can differ from simulated forces and can be
obtained only by direct measurement [20]. Direct
measurements of muscle forces are invasive and gen-
erally impractical.
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