
 

Acta of Bioengineering and Biomechanics 
Vol. 7, No. 1, 2005 

Analysis of the mechanical parameters of 
human brain aneurysm 

BRIGITTA K. TÓTH 

Budapest University of Technology and Economics, 
1111 Budapest, Műegyetem r. 3., Hungary, brigitta.toth@biomech.bme.hu 

GÁBOR RAFFAI 

Clinical Research Department, Second Institute of Physiology, Semmelweis University of Medicine,  
1082 Budapest, Üllői út 78/a., Hungary, raffai@elet2.sote.hu  

IMRE BOJTÁR 

Budapest University of Technology and Economics, 
1111 Budapest, Műegyetem r. 3., Hungary, ibojtar@mail.bme.hu  

Cardiovascular disease is one of the most frequent reasons of mortality in the western word. 
Nowadays the mechanical properties of biological soft tissues were treated from a continuum mechanical 
perspective. The aim of this article is to investigate the mechanical response of arterial tissue. We present 
some three-dimensional finite element model to study the mechanical effects. The arterial wall is 
composed mainly of an isotropic matrix material (elastin) and collagen fibers from two families which 
are arranged in symmetrical spirals. These fibers induce the anisotropy in the material response. So the 
constitutive law of an artery is orthotropic. We want to develop a new constitutive law for arterial wall 
mechanics. In addition we make a comparative study of some material model used in the literature to 
describe the mechanical response of arteries. These are the following models: 1. Linearly elastic model. 
2. Neo-Hookean model for incompressible materials. 3. Mooney–Rivlin model for incompressible 
materials. For this reason we make uniaxial and biaxial measurements to have appropriate parameters for 
the underlying material models. We investigate the biomechanical properties of strips from human 
cerebral aneurysms from surgery and cadavers. (An aneurysm is a bulge along a blood vessel.) 
Meridional and circumferential, thick and thin parts were distinguished respectively. This paper focuses 
on the analysis of the haemodynamic pattern and biophysical properties of cerebral aneurysms, diagnosed 
and delineated in living human individuals. The aim of this research is to estimate stresses at critical 
points of the aneurysm wall and its parent artery, and to estimate the likelihood of a later aneurysm 
rupture. 
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1. Introduction 

Brain arterial aneurysms are common forms of arterial deformation occurring in 
about 5% of the adult population. The aneurysm is a bulge along the artery hanging 
there embedded in the surrounding tissue. In most situations, it usually appears around 
a joining of two arteries. This bifurcation is the part of the supplier of the brain 
vascular bed system so if its blow-out (rupture) causes incalculable chain reaction, 
there is no safe solution without any side-effect to protect the patient against 
unpleasant consequences, see for instance [3], [28], [40]. In the majority of the cases, 
the patient does not notice any symptoms of the aneurysm, in some cases, however, 
the aneurysm bursts leading to stroke and immediate death. Figure 1a presents a photo 
of an aneurysm obtained by planar angiography, while figure 1b illustrates the 
characteristic places of aneurysms in the human brain. 

At present, the therapeutic decision on unruptured aneurysms is made purely on 
the basis of the size and location of the lesion in the belief that those are the only 
factors influencing the likelihood of rupture. 

  

Fig. 1a. Photo of the aneurysm Fig. 1b. The usual places where brain aneurysms occur 

The literature results providing the basis for this practice have been seriously 
criticized by many researchers and clinical decision is frequently based on the 
personal experience and judgment of the doctor. Our work will provide the physicians 
– and the patients – with a much more accurate prognosis of the disease that will allow 
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for 
a more appropriate decision about treatment. We note that besides its scientific merit, 
the potential for providing information about the prognosis of the disease and about 
the optimal technique for its treatment would greatly enhance the value of the modern 
angiography systems. 

Nevertheless the importance of this area cannot be overestimated – the most 
important causes of death in developed countries are arterial deceases. Research 
budgets and a public interest in this subject have been grown continuously. 

2. Methods 

2.1. Research strategy  

The geometrical and morphological data as well as physiological parameters of the 
patients were collected at the National Institute of Neurosurgery and combined with 
physiological information about the vessel wall and aneurysm wall provided by the 
Department of Human Physiology (Semmelweis Medical University, Budapest). The 
determination of the material parameters of the aneurysm wall is the first step of our 
research. Based on this information, the researchers from the Research Centre for 
Biomechanics (TU Budapest) prepared 3D coupled (flow and solid) finite element 
models of the aneurysms. Strength calculations were done on these models in order to 
predict their mechanical strength (allowable blood pressure, etc.) and to compare the 
effects of different possible medical treatments. This is the second step of the research 
activity. 

The final goal of this research program was to construct non-intrusive diagnostic 
tools detecting the presence of aneurysms and to assess the necessity of medical 
intervention.  

Since the process is highly unsteady, and the elastic deformation of the wall and 
the flow in the arteries are strongly coupled, the solution is far from trivial. After 
performing simulations on rigid models for fluid mechanics on the one hand and on 
wall only models for the elasticity studies on the other, the next step will be to couple 
both phenomena and the data will be transferred in each time step to provide time-
dependent boundary conditions for both simulations. 

Specific aim of this study was to characterize quantitatively the behaviour of strips 
from human cerebral aneurysm and to simulate the mechanical behaviour of the 
vascular wall using three-dimensional finite element models 
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2.2. Material parameters 

One of the problems is that different constitutive models in the available literature 
are based on data from different types of arteries [27], [2], [4]. Moreover, 
cardiovascular disease like human cerebral aneurysm can only be studied in detail if a 
reliable constitutive model of the arterial wall is available. In order to understand the 
sterically inhomogeneous behaviour of cerebral aneurysms, we measured the 
mechanical properties of the aneurysm tissue as a function of strain in different 
regions (thin and thick) and in different directions (meridional and circumferential). 
The strips from aneurysms showed typical hyperelastic-plastic behaviour in the stress–
relaxation tests. Meridional thin strips exhibited larger tensile strenghts than the 
meridional thick ones, see [32]. 

First we summarize the theoretical framework of the description of the arterial 
wall mechanics. We begin by giving a brief description of the histological structure 
of arterial walls and we outline the general characteristic of the mechanical response 
of arteries. An artery can practically be treated as a thick-walled circular cylinder 
which is appropriate for the analysis of bending, extension, inflation and torsion of 
the tube. In the literature, some models are able to provide a full three-dimensional 
description of the state of stress in the artery, but a large number of material 
constants may lead to parameter identification problems. Several models use 
geometrical simplifications, too. 

Then we present the uniaxial clinical studies which constitute the basis for 
quantifying material properties such as Young’s modulus. 

2.3. Human arterial histology 

In general, arteries are subdivided into two types: elastic and muscular arteries 
[1], [5]. Elastic arteries have relatively large diameters and are located close to the 
heart, while muscular arteries are located on the periphery. We focus our attention 
on the microscopic structure of muscular arterial walls composed of three distinct 
layers. These are the tunica intima, the tunica media and the tunica adventitia.  

The tunica intima is the innermost layer of the artery. The arterial wall is lined 
with a single layer of endothelial cells. In healthy young arteries, the intima is very 
thin and does not contribute significantly to the solid mechanical properties of the 
human arterial wall. But it is known that pathological changes of the intimal 
components are associated with significant alterations in the mechanical properties. 

The tunica media is the middle layer of the artery and from mechanical perspective 
it is the most significant layer. It consists of a complex three-dimensional network of 
smooth muscle cells, elastin and collagen fibrils. The so-called fenestrated elastic 
laminae separate the media which form concentrically fiber-reinforced layers, and this 
middle layer is separated from the intima and the adventitia by the internal elastic 
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laminae and the external elastic laminae, respectively. The smooth muscle cells, the 
elastin and collagen fibrils and the fenestrated elastic laminae constitute a continuous, 
almost circumferentially oriented fibrous helix. This arrangement gives high strength 
and resilience. 

The tunica adventitia is the outermost layer of the artery. The thickness of the 
adventitia depends on the type of the artery and its topographical site. Apart from 
a histological ground substance it also consists of fibroblasts, fibrocytes and thick 
 

 

Fig. 2. Model of the maior components of a healthy artery composed of three layers: 
intima, media and adventitia 

bundles of wavy collagen fibrils, which are arranged in helical structures. They 
contribute to the strength and stability of the arterial wall. The adventitia is less stiff at 
low pressure than the media but at higher pressures the collagen fibrils straighten out 
and the adventitia turns into a stiff tube. 

2.4. Typical mechanical behaviour of arterial walls 

The reliability of material parameters is related to the quality of the experimental 
data [13], [18], [20], [22]. It may come from in vivo tests or from in vitro tests. By in 
vivo tests the artery is observed under real life conditions, while in vitro tests mimic 
real loading conditions in a physiological environment. The complex anisotropic 
material response can only be measured in an in vitro experiment, though the exact 
physiological circumstances can be rather difficult to simulate. 

with 
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Arteries do not change their volume in the physiological range of the deformation, 
for this reason they can be regarded as incompressible – rubber like – materials. 
Therefore we have set the task to determine the mechanical properties from biaxial 
tests: uniaxial extension tests are certainly insufficient to quantify completely the 
mechanical behaviour of arterial walls.  

The mechanical behaviour of arteries depends on physiological and chemical 
environmental factors, therefore they were tested in appropriately oxygenated, tempe- 
rature-controlled salt solutions. 

Whereas the composition of arterial walls varies along the arterial tree and thus the 
shape of the stress–strain curve for blood vessels depends on the anatomical site, the 
general mechanical characteristics are the same. 

The artery is a heterogeneous system and it can be regarded as a fiber-reinforced 
composite biomaterial. The layers of the arterial walls are composed mainly of an 
isotropic matrix material (associated with the elastin) and the fibers (associated with 
the collagen) from two families, the latter being arranged in symmetrical spirals. We 
note that we have made a simple independent finite element simulation of the 
biomechanical behaviour of arterial wall to check the effect of the different parameters 
in different constitutive equations. 

2.5. Continuum-mechanical framework 

Fundamental equations are essential to characterize kinematics, stresses and 
balance principles and hold for any continuum body [14]. Generally we use a 
functional relationship as a constitutive equation, which determines the state of stress 
at any point x of a continuum body. Our main goal is to study various constitutive 
equations, in the field of solid mechanics, appropriate for approximation techniques. 
We follow the so-called phenomenological approach which describes the macroscopic 
behaviour of living tissues as continua. 

Numerous materials can sustain finite strains without any noticeable volume 
changes. Such materials can be regarded as incompressible, according to a common 
idealization in continuum mechanics. Materials which maintain the constant volume 
throughout a motion are characterized by the incompressibility constraint J = 1, where 
J means the determinant of the gradient tensor. In general, these materials are referred 
to as constrained materials. 

The stress response of hyperelastic materials is derived from a given strain energy 
function Ψ : 

ij
ij ε
σ

∂
∂

=
)ε(Ψ .  

In the next section, we summarize the most important energy functions frequently 
used in biomechanics. 
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2.5.1. The Ogden model for incompressible rubber-like materials 

The postulated strain energy function Ψ describes the principal stretches λa , 
,3,2,1=a  that change from the reference configuration to the current configuration: 

∑
=

−++==
N

p

ααα

p

p ppp λλλ
α
µ

λλλΨΨ
1

321321 )3(),,( , 

where N is a positive integer which determines the number of terms in the strain 
energy function, pµ  are constant shear moduli and pα  are dimensionless constants, 
p = 1, …, N. Only three pairs of constants are required to give an excellent correlation 
with experimental stress–deformation data.  

After differentiation we find that the three principal values σa of the Cauchy 
stresses assume the form: 

3,2,1
1

=+−= ∑
=

a,λµpσ
N

p

α
apa

p , 

where p is a scalar not specified by a constitutive equation. It is determined from 
a boundary condition of the problem examined. 

2.5.2. The Mooney–Rivlin model for incompressible rubber-like materials 

In the Mooney–Rivlin model, we assume the following values: N = 2, α1 = 2, 
α2 = –2. Using the strain invariants 21, II  and the constraint condition 12

3
2
2

2
13 == λλλI  

we arrive at: 

)3()3()3()3( 2211
2

3
2

2
2

12
2
3

2
2

2
11 −+−=−+++−++= −−− IcIcλλλcλλλcΨ  

with the constants 211 /µc =  and 222 /µc −= . 
The derivatives of the strain energy function of the Mooney–Rivlin model with 

respect to the invariants I1 and I2 give the simple associated stress relations: 

1
21 22 −−+−= bbI ccpσ , 

where the strain tensor b–1 is the inverse of the left Cauchy–Green tensor b, which is 
defined based on the gradient tensor F: TFFb = (F is on the left). It is an important 
strain measure in terms of spatial coordinates. I denotes the second-order unit 
tensor. 
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2.5.3. Neo-Hookean model for incompressible rubber-like materials 

In the neo-Hookean model, 2,1 1 == αN  are assumed. Using the first principal 
strain invariant I1 we find that: 

)3()3( 11
2
3

2
2

2
11 −=−++= IcλλλcΨ  

with the constant 2/11 µ=c . The strain energy function involves a single parameter 
only and relies on phenomenological considerations. 

Derivatives of the strain energy function of neo-Hookean model with respect to the 
invariants I1 give the simple associated stress relations: 

bI 12cp +−=σ , 

where the strain tensor b is the left Cauchy–Green tensor, and I is the unit tensor. 

2.5.4. Some other constitutive models for arterial walls 

We note that other versions of the constitutive equations for human artery walls 
can be found in the literature, see for instance the works of Delfino, Vaishnav, Fung 
[52] and especially Holzapfel. In these models, an active mechanical behaviour of 
arterial walls is governed mainly by the intrinsic properties of elastin and collagen 
fibers and by the degree of activation of smooth muscles; however, a passive 
mechanical behaviour is quite different and is governed mainly by the elastin and the 
collagen fibers. Most constitutive models describe the artery as a macroscopic system 
and capture the response near the physiological state.  

In our program – based on our laboratory tests – we applied the most common 
strain energy functions. In figure 3, our uniaxial and biaxial test machines can be seen, 
both connected to the computer. In our recent numerical simulations, the test results of 
the biaxial specimens were not applied yet because of the insufficient number of 
experimental results. 

 

Fig. 3. The uniaxial and biaxial laboratory test machines 
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In figure 4, we show some characteristic experimental diagrams. We had 53 
different specimens from 30 persons. All tests were carried out immediately after the 
operations, within 24 hours. Meridian and circumferential strips were cut and 
measured from the aneurysma sack. 

Based on these experiments we calculated the material parameters of the Mooney–
Rivlin and neo-Hooke an nonlinear hyperelastic models (see the table). Based on 
simple finite element tests all material parameters were checked. 
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Fig. 4. Uniaxial stress–strain curves for meridian and circumferential aneurysma strips 
in passive condition (based on the tests performed in the authors’ laboratory). A thick solid line 

represents an approximate engineering response of the biomaterial 

Table. The Mooney–Rivlin and neo-Hookean material parameters calculated from experiments 

 ε σ [N/cm2] E [N/cm2] 

 Feminine Masculine Feminine Masculine Feminine Masculine 
Equator-thick 1.80 1.10 70 14 39 12 
Equator-thin 0.90 0.60 93 55 134 108 
Longitudinal-thick 0.40 0.70 40 34 65 49 
Longitudinal-thin 0.60 0.55 100 84 167 152 

 
   Mooney–Rivlin   neo-Hookean 

  C10 [N/cm2] C01 [N/cm2] C10 [N/cm2] 

  Feminine Masculine Feminine Masculine Feminine Masculine 
Equator-thick 5.2 1.6 1.3 0.4 6.5 2.0 
Equator-thin 17.9 14.4 4.5 3.6 22.4 18.0 
Longitudinal-thick 8.7 6.5 2.2 1.6 10.9 8.1 
Longitudinal-thin 22.3 20.3 5.6 5.0 2.79 25.3 
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2.6. Finite element analysis 

The finite element simulations were performed using MSC Marc 2001, a 
commercially available finite element software. The cycle of finite element analysis 
involves six distinct steps: Step 1: mesh generation. Step 2: definition of the boundary 
conditions, initial conditions and links. Step 3: material and geometric properties. Step 
4: contact. Step 5: load cases and jobs. Step 6: interpretation of the results. 

 

Fig. 5. Basic geometry of a typical aneurysm model. The dimensions of the structure are in [mm] 

The radius to thickness ratio of the structure of aneurysm warrants the use of shell 
theory instead of a full three-dimensional analysis based on hexahedral elements. The 
aneurysm is modelled as a cylinder–cylinder-sphere intersection. Because of the 
symmetry, only a part of the aneurysm needs to be modelled. The thickness to radius 
ratio is small enough to allow us to use the shell approximation. The boundary 
conditions can be applied to the shell edge without affecting the stresses at the 
intersections. During the phase of mesh generation we used the four-noded shell 
element. The artery was considered to be a cylindrical tube with incompressible wall 
subjected to combined inflation, extension and torsion that mimic real conditions in a 
physiological environment. 



B. TÓTH et al. 14 

  

  

Fig. 6. A simplified model of aneurysm and its mesh generation 

There are two types of boundary conditions: expressed in global and in local 
coordinates. The artery was considered to be a cylindrical tube with an incompressible 
wall subjected to combined inflation, extension and torsion that mimic real conditions 
in a physiological environment. Figure 5 shows the distribution of the Cauchy stress 
through the deformed arterial wall and the aneurysm. 
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Fig. 7. Inlet boundary condition. Pulsing pressure in the artery; in domain: 80–120 Hgmm 

  

  

Fig. 8. Arterial tube and the aneurysm enlarged under combined inflation, extension and torsion. 
The loading conditions mimic real loading conditions in a physiological environment 
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Fig. 9. Deformed states of the artery and the distribution of the Cauchy stress through 
the deformed arterial wall 

Some preliminary results demonstrate how the behaviour of aneurysm can be 
simulated. This idealization may be far from the real aneurysm, but it is simple enough 
to test the model behaviour. The idealized model is made up of two cylinders and a 
sphere.  

  

Fig. 10. The equivalent von Mises stress (left) and displacement (right) along the aneurysm walls 
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Figure 9a shows that the equivalent von Mises stress in the artery wall on the top 
of the aneurysm “bulge” is significant. This is in harmony with the medical 
observations. Note that higher stress values can only be detected at the “shoulders” of 
the aneurysm. This, however, cannot be the cause of the rupture since experience 
shows that it usually happens along the “equator” of the aneurysm.  

We have made another finite element mesh too, which reproduces three layers of 
artery, although the number of layers can be changed. During the phase of mesh 
generation we used the hexahedron type elements with 8 nodes. Eight finite 
elements were applied along the wall thickness (two for the intima, four for the 
media and two for the adventitia). It was assumed that the media occupied 2/3 of the 
arterial wall thickness. In the circumferential and axial directions, an arterial layer 
was discretized by 40 and 40 finite elements, respectively. The configuration of one 
arterial layer was taken to correspond to a circular cylindrical tube with wall 
thickness, inner radius and length. The boundary conditions were the same. Figure 5 
shows the distribution of the Cauchy stress through the deformed arterial wall. It 
can be seen that the stress distribution is mainly determined by the media, which is 
in agreement with the experimental findings. This result is an approach, since the 
adventitia is very soft in the associated strain domain and the intima is not of 
mechanical interest.  

 

Fig. 11. Finite element model of a healthy elastic artery composed of three layers: 
intima (the innermost 2 layers), media (the 3rd–6th layers), adventitia (the 7th–8th layers) 
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Fig. 12. Left: arterial tube under combined inflation, extension and torsion. 
The loading conditions mimic the real loading conditions in a physiological environment. 

Right: states of the artery deformation and the distribution of 
the Cauchy stress through the deformed arterial wall 

In the immediate future, we will embark on biaxial measurements. For this reason 
we have made a comparative study to decide which type of the grip is more favourable 
and which type has a smaller domain with disturbations. The two possible 
arrangements are shown in figure 13. 

 

Fig. 13. Two possible arrangement of  arterial strips 

Due to symmetry it is sufficient to analyze the quarter of the vessels shown in 
figure 13 (see the sections marked by lines). 

 



Mechanical parameters of brain aneurysm 19 

  

Fig. 14. Displacement and von Mises stresses by 5% extension 
in two mentioned types, respectively 

  

Fig. 15. Displacement and von Mises stresses by 10% extension 
in two mentioned types, respectively 

  

Fig. 16. Displacement and von Mises stresses by 15% extension 
in two mentioned types, respectively 
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Fig. 17. Displacement and von Mises stresses by 20% extension 
in two mentioned types, respectively 

These results show that we cannot make a significant distinction between the two 
types. The difference between the colours in the middle of the artery segment has no 
physical sense. The stress values that we can read in contour plots are the same. Only 
the maximum and minimum values differ from each other. 

Due to angiography we can build a model of the existent aneurysm, and this 
model can be used for Finite Element Analysis calculation, too. The angiography 
allows us to design a real three-dimensional model with an original geometry. 
When the aneurysm material parameters are used the system could help the doctors 
to analyze the case and to decide whether or not a patient needs an urgent 
operation. This way of geometrical modelling is much more complicated than the 
previous one. Many different tests are needed to declare that the system works 
reliably. Moreover, the analysis of different material models and boundary 
conditions need more and more calculations. With this part of the task we have just 
started to work. The system is almost ready for the final testing. Thanks to the 
engineers of General Electric, we are able to gain three-dimensional geometrical 
data from angiography. 

3. Summary 

All the models discussed are based on phenomenological approach in which the 
macroscopic nature of blood vessels is modelled. From this study it may be concluded 
that there is a need for a constitutive model which describes the viscoelastic behaviour 
of the human arterial wall. We have proposed an approach in which the arterial wall is 
approximated as a three-layer thick-walled tube, with each layer modelled as a fiber-
reinforced composite in the domain of large deformations and we have examined 
a human arterial aneurysm. 
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In cooperation with the co-workers of the National Institute of Neurosurgery and 
Human Sciences, we made the first step in the complex numerical simulations of brain 
aneurysms.  

This work was done with the help of an OTKA grant (principal investigator Doctor 
István Szikora, Nat. Inst. of Neurosurgery). 
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