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Fabric dependence of bone ultrasound
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Current diagnosis of bone loss and osteoporosis is based on the measurement of the Bone Mineral Density (BMD) or the apparent
mass density. Unfortunately, in most clinical ultrasound densitometers: 1) measurements are often performed in a single anatomical
direction, 2) only the first wave arriving to the ultrasound probe is characterized, and 3) the analysis of bone status is based on empirical
relationships between measurable quantities such as Speed of Sound (SOS) and Broadband Ultrasound Attenuation (BUA) and the den-
sity of the porous medium. However, the existence of a second wave in cancellous bone has been reported, which is an unequivocal
signature of poroelastic media, as predicted by Biot’s poroelastic wave propagation theory. A fabric-dependent anisotropic poroelastic
approach is empolyed as a theoretical framework to describe the microarchitectural-dependent relationship between measurable wave
properties and the elastic constants of trabecular bone, and thus represents an alternative for bone quality assessment beyond BMD alone.
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1. Introduction

The current standard for the diagnosis of bone loss
and osteoporosis consists in determining the amount of
Bone Mineral Density (BMD) measured with a Dual
Energy X-ray Absorptiometry (DEXA) system. The
BMD is highly correlated to bone mass when meas-
ured in the spine, wrist and femoral neck. However,
a significant number of women diagnosed with osteo-
porosis based on BMD measurement do not suffer
fractures, whereas many women with normal BMD do
[1]. These studies have demonstrated that BMD
measurements lack both sensitivity and selectivity to
effectively identify patients with decreased bone
strength and at risk of fracture, indicating that other
factors besides bone mass play an important role in
osteoporosis.

Ultrasound wave propagation is an attractive alter-
native to diagnose osteoporosis [2]–[4] because it is
non-ionizing, inexpensive and non-invasive. More

importantly, ultrasound waves are elastic vibrations
that can provide direct information on the mechanical
properties of the medium in which they propagate.
Clinical ultrasound in bone is based on a wave trans-
mission technique to measure the Speed of Sound
(SOS) and Broadband Ultrasound Attenuation (BUA)
in the heel bone (calcaneum). Unfortunately, a major
limitation associated with current clinical ultrasound
systems [5] – often called ultrasound densitometers –
consists in determining bone mass density as DEXA
does, without taking advantage of the fact that ultra-
sound is sensitive to microarchitecture and tissue
composition [6]–[8].

In most clinical ultrasound densitometer systems,
only the first wave arriving to the ultrasound probe is
identified. If only one wave is measured, the analysis
is limited to an “equivalent medium approach” in
which the solid trabecular structure cannot be distin-
guished from the fluid within the pores. However, the
existence of a second wave in cancellous bone has
been reported [9]–[12], which is an unequivocal sig-
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nature of poroelastic media. These two waves propa-
gate with different velocities and have been shown to
correspond to the fast and slow waves predicted by
Biot’s [13]–[18] poroelastic wave propagation theory.
Therefore, a poroelastic wave propagation theory is
conceptually more appropriate than an equivalent
media approach to characterize the properties of the
porous medium.

The application of poroelasticity to bone tissue
[19] and geological materials [13]–[18], [20] has been
described in the past, and a number of models based
on the isotropic Biot theory of wave propagation in
porous media have been used [9], [10], [21], [22] to
explain acoustic wave propagation measurements on
cancellous bone. However, isotropic poroelastic models
cannot explain the variability of measured wave ve-
locities [12] when bone becomes anisotropic as a con-
sequence of age and osteoporosis. Bone porosity alone
is an inappropriate parameter of cancellous bone
acoustic properties when the medium is anisotropic.
This is because a scalar – such as porosity or any densi-
tometry measurement – does not have the capacity to
fully describe the cancellous bone architecture: a tenso-
rial quantity such as the fabric tensor is required.

Unfortunately, most clinical ultrasound densi-
tometers depend on empirical relationships between
SOS/BUA and bone density that have failed to im-
prove the assessment of bone loss as provided by
DEXA measurements. Furthermore, measurements of
SOS and BUA are performed in a single direction at
the calcaneum. Such measurement cannot fully de-
scribe the properties of anisotropic bone, for which
multidirectional ultrasound measurements are re-
quired. In contrast, the fabric-dependent anisotropic
poroelastic approach proposed in this study has the
advantage of providing a theoretical framework to
describe the relationship between measurable wave
properties (SOS, BUA, etc) and the elastic constants
of the trabecular bone structure. Since this poroelastic
wave propagation theory depends on anisotropy and
tissue composition in addition to bone mass density, it
represents an alternative for bone quality assessment
beyond BMD.

In this paper, the governing equations for wave
motion in the linear theory of anisotropic poroelastic
materials including the dependence of the constitutive
relations upon fabric [1] are employed. Fabric is
a quantitative stereological measure of the degree of
structural anisotropy in the pore architecture of a po-
rous medium (see [1] for references). With the excep-
tion of the addition of the fabric variable, a tensor, the
formulation of wave motions in the context of poro-
elastic theory is consistent with classic and contempo-

rary literature in the field [13]–[18], [20]. Unchanged
by the addition of anisotropy is the fact that the total
elastic volumetric response in poroelasticity is due to
a combination of the elastic volumetric response of
the matrix material of the porous solid, the volumetric
elastic response of the pore fluid, and the pore volume
changes in the porous medium. The theory of wave
propagation in fluid-saturated porous materials em-
ploying the fabric variable is summarized in section 2.
The propagation conditions for plane waves in an
anisotropic, fabric dependent, saturated porous me-
dium are then derived in section 3, and the specializa-
tion of these results to the propagation in a principal
direction of fabric are presented in section 4. The final
section contains our discussion and concluding re-
marks.

2. Wave propagation
in anisotropic porous media

In the papers of 1956 on wave propagation by
BIOT [15], [16], u represents the displacement vector
of the solid matrix phase and U represents the dis-
placement vector of the fluid phase. These were the
two basic kinematic quantities employed in those
works. In [17], the displacement vector U of the fluid
phase was replaced by the displacement vector w of
the fluid relative to the solid, thus

w = U – u. (1)

The present development follows [17], [18] and
the two basic kinematic fields are considered to be the
displacement vectors u and w. The relative velocity of
the fluid and solid components is, from (1), as follows

uUw &&& −= . (2)

The variation in fluid content ζ is defined as

w⋅−∇=ζ . (3)

The variation in fluid content ζ  is the variation of
the fluid volume per initial unit volume of the porous
material due to diffusive fluid mass transport; it is
defined as the difference between the volumetric
strain of the pore space and the volumetric strain of
the fluid volume in the pore space and is dimension-
less.

The field equations of motion are [17], [1]
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where:
Aijkm is Biot’s elasticity tensor,
Mkm is the proportionality tensor between the strain

tensor and the fluid pressure p,
M is the proportionality factor between the varia-

tion in fluid content ζ  and the stress tensor,
Rkm is the flow-resistivity tensor,
Jkm is the micro-macro velocity average tensor,
ρ is the bulk density,
ρs represents the density of the solid matrix mate-

rial,
ρ f represents the density of the pore fluid.
The micro-macro velocity average tensor Jkm acts

like a density distribution function that relates the
relative micro-solid-fluid velocity to its bulk volume
average w& . It is interesting to note that Biot’s elas-
ticity tensor Aijkm differs from the drained elasticity
tensor by the term MAijAkm, which is the open prod-
uct of the Biot effective stress coefficient tensor A
with itself [1].

Equations (4) and (5) are two coupled wave
equations for the solid displacement field u and the
displacement field w of the fluid relative to the
solid.

The propagation of a plane wave is represented
kinematically by a direction of propagation, denoted
by n, a unit normal to the wave front, and a or b,
which are the directions of displacement for the wave
fronts associated with u and w, respectively. These
two plane waves are represented by
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where:
v is the wave phase velocity in the direction n,
x is the position vector,
ω is the frequency,
t is the time.
The relationship between the phase velocity v and

the frequency ω of attenuating waves is a complex
quantity, here represented by kRe + iαIm

ImRe α
ω

ik
v

+
= . (7)

The imaginary part α is related to the wave at-
tenuation as a function of travelled distance (e–αn⋅x)
and the real part k describes the wave vector and
points in the direction n. A transverse wave is char-
acterized by a⋅n = 0, a longitudinal wave by a⋅n = 1.
Substituting the representations (7) for the plane
waves into the field equations (5) and (6) one obtains
equations that are in [17], [18] and many other places

0)()( 22 =−+− kikfikkikik bvCavQ δρδρ , (8)
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where the following notation has been introduced:

kjijikjmijkmik nnMCnnAQ == , , (10)

Q is the acoustical tensor from elastic wave
propagation,

C represents the interaction of the velocity fields
u and w.

Rewritten in matrix notation equations (8) and (9)
take the form

0)()( 22 =⋅−+⋅− b1a1Q vCv fρρ , (11)
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Equations (11) and (12) represent an eigenvalue
problem, the squares of the wave speeds v2 represent-
ing the eigenvalues and the vectors a and b repre-
senting the eigenvectors. Rewriting equations (11) and
(12) as a 6 by 6 matrix formed from the four 3 by 3 ma-
trices that appear in (11) and (12) and also represent-
ing the two 3D vectors a and b as one 6D vector, the
following representation is obtained:
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Equation (13) is a generalization of the Christoffel
equation [23], [24] in anisotropic elastic wave propa-
gation to the poroelastic case, the poroelastic Christof-
fel equation is a possible name for this result. Since the
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right-hand side of this linear system of equations is
a zero 6D vector, it follows from Cramer’s rule that, in
order to avoid the trivial solution, it is necessary to set
the determinant of the 6 by 6 matrix equal to zero, thus
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2.1. Fabric dependence of
tensors Q, C, J and R

Formulas relating the acoustic tensor Q, the flow
resistivity tensor R and the tensor C, representing the
interaction of the velocity fields u and w, to the fabric
tensor F were obtained in [1] and are summarized in
this subsection.

The dependence of the elastic acoustic tensor Q
upon the fabric tensor F is given by
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The six scalar quantities defined in (15) are scalar-
valued functions of φ, II and III, φ is the porosity and
II and III are the second and third invariants of the
fabric tensor F.

The formula for the tensor C is
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The micro-macro velocity average tensor J is re-
lated to the fabric by

qjiqijijij FFjFjjJ 321 ++= δ , (17)

where j1, j2, and j3 are the functions of φ, II and III.
Similarly, the flow-resistivity tensor R is related to the
fabric by

qjiqijijij FFrFrrR 321 ++= δ , (18)

where:
r1, r2, and r3 are the functions of φ, II and III,
R is equivalent to the inverse of the second-rank

intrinsic permeability tensor K.

2.2. Tortuosity, fabric,
frequency dependence

The relationship between the second-rank intrinsic
permeability tensor K and the fabric tensor F is ob-
tained by assuming that K is an isotropic function of F.
The relationship between two second-rank symmetric
tensors in which one is an isotropic function of the
other then produces the relationship

qjiqijijij FFkFkkK 321 ++= δ . (19)

This permeability tensor can be rewritten using the
intrinsic permeability κ0 as

qjiqijijij FFKFKKK 321 ++= δ , (20)

where:
Kij is the intrinsic permeability which is represen-

tative of the geometry of the porous medium only, not
the fluid,

K1, K2, and K3 are the functions of φ, II and III.
The hydraulic permeability Kij/μ differs from the

intrinsic permeability where μ is the pore fluid vis-
cosity. We introduce the symbol κ0 to represent the
value of the intrinsic permeability tensor when it is
averaged over all possible directions at a point
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2 321

2

0
TtrKtrKK FFF ⋅++=

πκ , (21)

and rewrite (63) as
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where

,
0κ
iA

i
KK =     i = 1, 2, 3. (23)

The fabric tensor describes the configuration and
orientation of the flow paths, and the average intrinsic
permeability κ0 is proportional to the squared average
diameter of the pores d through which the fluid
moves:

2
0 d∝κ . (24)

The tensor K takes into account dissipation phe-
nomena due to viscous losses; however, expression
(22) for permeability is adequate only for low fre-
quencies of fluid motion and needs to be corrected to
take into account the change in fluid flow regime oc-
curring between low and high frequencies of wave
propagation. This correction was originally introduced
by JOHNSON [25] describing a dynamic permeability
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in a porous medium system characterized by orthogo-
nally intersected tubes.
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The dynamic permeability tensor K is then de-
scribed as a function of the average intrinsic perme-
ability κ0, the fabric tensor and the Bessel functions that
characterize the dynamics of the oscillatory fluid flow
inside a cylindrical channel. In this equation, J1 and J0

are, respectively, the first order and zeroth order Bes-
sel functions of the first kind; d corresponds to the
average characteristic pore dimension; and the inverse
of the viscous skin depth χ is defined as a function of
the angular frequency ω, the fluid mass density ρ f and
the dynamic viscosity of the fluid μ:
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The motion of the viscous fluid relative to the
solid is characterized by the velocity gradient profile
perpendicular to the pore wall, as a consequence of
the viscous properties of the fluid. If the characteristic
thickness of the viscous layer (viscous skin depth)
is greater than the pore diameter d, the resulting
velocity profile will be parabolic throughout the pore
lumen and the fluid flow will be the Poiseuille flow.
However, as the frequency increases, the viscous skin
depth becomes smaller than the pore radius, and the
profile of the fluid flow is no longer parabolic. A con-
sequence of this change in the fluid flow regime into
the pore is the existence of a critical frequency

2
crit / dρf fπμ= , distinguishing the frequency regions

where the slow wave may theoretically propagate. In
the low frequency regime (below critcrit 2 fπω = ), the
viscous coupling phenomenon dominates over the
inertial one, locking together fluid and solid displace-
ments, and thus hampering the genesis of the slow
wave. However, at high frequencies, the viscous cou-
pling phenomenon becomes much less important than
the inertial one, and the relative movement between
fluid and solid is no longer impeded. Above this criti-
cal frequency, both fast and slow waves may be ex-
pected to propagate.

The inverse of the second-rank intrinsic perme-
ability tensor K, the flow-resistivity tensor R, is re-
lated to the fabric in the situation representing the
frequency dependence by (18) where
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where the ,A
ir  i = 1, 2, 3, are the functions of φ, II and

III. Following [25] and [26] the tortuosity tensor A(ω)
is introduced
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and using Darcy’s law it follows that
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if we assume that v = constant ⋅ e–iωt. From (18) and
(28) it follows that

)()( 321
0
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ωρ
μφω , (31)

establishing a connection between the tortuosity
tensor and the fabric tensor in the case of harmonic
wave propagation, where the ri are given by (27).
We have not explored this relationship yet, but we
anticipate that this relationship will yield relation-
ships between the tortuosity tensor and the curva-
ture and torsion of the fluid channels in the porous
material.

3. Propagation of waves
along the principal axes

of symmetry in
orthotropic porous media

3.1. Phase velocity
and phase direction

In this section, the solution is developed for waves
that propagate in the direction of a principal axis of the
fabric tensor. The direction of propagation is selected to
be the one direction, thus F and n are given by
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The solution to the problem is the solution of the 6
by 6 system of equations given by (13), thus the val-
ues of the tensors J, R, C and Q in the coordinate
system of the principal axes of the fabric tensor and at
the vector n = {1, 0, 0} are determined first. Under
these conditions J and R are given by
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where R and J are given by (17) and (18), thus
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C is given by (16) as
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In the coordinate system of the principal axes of
the fabric tensor and at the vector n = {1, 0, 0}, the
four 3 by 3 sub-matrices that form the 6 by 6 matrix in
equation (13) are given by
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Substitution of the four 3 by 3 matrices above into the 6 by 6 determinant (14) reveals that the result may be
expressed as three 2 by 2 matrices for the three sets of components, {a1, b1}, {a2, b2} and {a3, b3}:
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Requiring that the determinants of these 2 by 2 matrices vanish yields four non-trivial solutions for the
squared wave speed v2. The vanishing of the first of the determinants of these 2 by 2 matrices provides two roots
of a quadratic equation that represent the fast and the slow squared longitudinal wave speeds. These speeds are
given by
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where the specific formulas for calculating k1 and α1 require a hierarchy of substitutions specified by the fol-
lowing equations and the interposed text. k1 and α1 are given by
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where the two possible values are determined by selecting the + and – signs. The two roots correspond to
the fast and the slow longitudinal waves. The k–1 and α–1 appearing in the formulas for k0 and α0 above are
given by
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where the k–2 and α–2 appearing in the equation above are given by
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Fortunately the formulas for the shear waves are much simpler. The vanishing of the second and third of the
determinants of the 2 by 2 matrices in (44) provide a zero root and a non-zero root from each determinant. The
two non-zero roots are the squared shear wave speeds:
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When the first of these are recast in the form of (7), (45), k2 and α2 are given by
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and similar formulas apply in the recasting of the second of (50); one need only replace the 2’s by 3’s in equa-
tion (51).
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3.2. Wave polarization

The vectors a and b for the fast and slow waves
are given by

},0,0,{},0,0,{ 11 ba == ba (52)

where a1 and b1 are related by the following two
equivalent expressions for the fast wave
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and the next two equivalent expressions for the slow
wave,
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and for the two shear waves by
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respectively.

3.3. Numerical example
applied to cancellous bone

The anisotropic poroelastic model of wave propa-
gation is now applied to the case of cancellous bone,
and these numerical results will be used to analyze
fast and slow wave velocity measurements from bo-
vine and human bone samples previously reported
[12]. In order to apply the model to cancellous bone,
values of the fluid and solid constituents of bone were
obtained from the literature. Since the fluid saturating

the cancellous bone structure in our experiments is
water, the fluid mass density ρ f = 1000 Kg/m3, bulk
modulus Kf = 2.25 GPa and viscosity μ = 1×10–3 Pa-s.
Furthermore, the mass density of the solid tissue in
trabecular bone ρ s has been reported to vary between
1800 and 2200 Kg/m3 [27]–[29], depending on the
tissue mineral density of the sample being measured.
Likewise, the Young’s elastic modulus of the miner-
alized matrix (Es) has been determined using acoustic
microscopy and nanoindentation [30]–[39], exhibiting
values ranging from 11.4 to 22.7 GPa. Specifically,
the Es value measured in the circumferential direction
varies between 13.5 and 16 GPa, and in the longitudi-
nal direction the Es value varies between 19 and 23 GPa.
These values of Es obtained at the subtrabecular scale
are close to the classical values measured for cortical
bone, which are 15 GPa in the circumferential direc-
tion and 20 GPa in the longitudinal direction. This
large variability reported in the literature for Es is
certainly due to the intrinsic variability of the tissue
mineralization and organic composition, but may also
be a consequence of using estimation approaches based
on different assumptions (boundary conditions, ge-
ometry, homogeneity), and experimental conditions
(temperature, tissue dehydration, strain rate, size scale).
The values for the material properties of the solid and
fluid constituents of bone considered in our numerical
results are summarized in the table.

Table. Bone tissue modulus, mass density
and fluid viscosity of fluid in bone

Parameter Symbol Value Units
Young’s elastic modulus of the

solid Es 18 GPa

Mass density of the solid ρ s 2000 Kg/m3

Mass density of the fluid ρ f 1000 Kg/m3

Fluid bulk modulus K f 2.25 GPa
Fluid viscosity μ 1 × 10–3 Pa-s
Pore size–porosity proportionality

constant c 5 × 10–5 m

In addition to the material properties of the solid
and fluid constituents of bone, the model requires the
value of the average, or effective, pore diameter d and
the average intrinsic permeability κ0 as a function of
the porosity. Histomorphometrical studies on cancel-
lous bone have reported pore sizes (trabecular spac-
ing) ranging from 300 μm to 2200 μm for samples
between 52 and 96% porosity [40]–[43]. Furthermore,
the pore size in 5–10% porosity cortical bone tissue is
considered to vary from around 20 to 60 μm, which
corresponds to the pore size of the Haversian canals
[44], [45]. Based on such bounds, the following em-

(53)

(54)

(55)
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pirical relationship for the pore diameter d as a func-
tion of the porosity is proposed:

)]1/([)( φφφ −= cd , (56)

where c is a constant of proportionality, in this study
chosen equal to 5 × 10–5 m, which leads to a variation of
the pore diameter as a function of porosity (figure 1a)

that corresponds to the bounds previously mentioned.
It is important to notice that this is just an approxima-
tion to relate the variation of the average pore size
with the porosity, but that such relationship may be
different and much more complex. This aspect would
be further explored in the near future by the authors.

Based on the pore size–porosity relationship
(56), the dependence of the intrinsic permeability on
the effective pore size 2

0 d=κ  [46] can be trans-
formed to be dependent on the porosity as well

22
0 )]1/([)( φφφκ −= c . Predictions of the intrinsic

permeability are shown in figure 1b, and exhibit
a large variability that coincides with studies reporting
experimental measurements of the permeability κ0

(1×10–12–1×10–7 m2) on cancellous bone [47]–[54].
The variability of the intrinsic permeability in porous
media is due to the dependence of the permeability on
the porosity [48], [49] and the microstructure of the
sample [49]–[52].

3.4. Phase velocity
as a function of porosity

The phase velocities of the two longitudinal
modes of wave propagation along the axes of symme-
try of an isotropic bone specimen (figure 2a) and an
orthotropic bone specimen (figure 2b) are shown as

functions of the porosity in figure 2. The fast wave
velocity (squares) depicted in figure 2a linearly de-
creases as the porosity increases from zero to 80%;
conversely, the slow wave velocity (diamonds) in-
creases with the porosity within the same range of
porosity. However, this monotonic behavior changes
drastically for porosities higher than about 80%, and

the fast wave velocity becomes almost constant and
independent of the porosity. At the same high porosity
level, the slow wave velocity shows a clear inflexion,
becoming inversely related to the porosity. It is im-
portant to notice that in addition to being independent
of the porosity, the fast wave at high porosity exhibits
velocity values equal to the wave propagation in the
fluid saturating the pores, the velocity of sound in
water (vfluid = 1480–1500 m/s).

Figure 2b is presented to illustrate the much
greater variability possible with an orthotropic mate-
rial compared to the isotropic material illustrated in
figure 2a. In figure 2b, the two longitudinal wave
modes are shown propagating along all three axes of
symmetry of an orthotropic bone sample. Anisotropy
is characterized by three distinct principal values of
fabric, F1, F2 and F3, and their associated perpendicu-
lar directions. In figure 2b, note the variability of the
fast wave for porosities lower than about 80% poros-
ity for the three different directions, as well as in the
variability of the slow wave at porosities higher than
80%, for the three directions. In contrast, the slow
wave velocity below 80% porosity and fast wave ve-
locity above 80% are practically insensitive to the
anisotropy of the trabecular bone structure.

These theoretical results indicate that changes in
both porosity and anisotropy are mainly shown in the
fast wave velocity at low and mild porosities, while
these changes are observed in the slow wave velocity

a) b)

Fig. 1. Pore diameter d as a function of porosity (a) and intrinsic permeability κ0 as a function of porosity (b)
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mainly at high porosities. In contrast, the slow wave at
low and mild porosities is slightly sensitive to changes
in porosity and practically insensitive to bone anisot-
ropy; and the fast wave at high porosities is independ-
ent of both porosity and anisotropy. Altogether, these
findings indicate the existence of a wave mode transi-
tion between the longitudinal wave mode (fast or
slow) that is most sensitive to changes in porosity and
anisotropy.

Predictions of the fast and slow wave velocities
made by this model will now be compared with ex-
perimental observations made previously by our
group [12]. Briefly, fourteen bovine and sixty human
trabecular bone samples were retrieved from bovine
femoral heads, human femoral heads and femoral
and tibial condyles. Ultrasound wave propagation
measurements were obtained from the three orthogo-
nal directions of these cubic shaped samples (A, B,

and C), thus taking into consideration the directional
variability of the bone sample microarchitecture.
Measurements were performed in immersion with
distillated water at room temperature, using two
broadband ultrasound transducers (Panametrics
V323-SU) at a central frequency of 2.25 MHz (0.25
in diameter). The emitter was excited by a damped
single pulse generated by an ultrasonic source
(Panametrics 5052 UA) operated in a transmission
mode. The signal was amplified in 40 dB and digit-
ized by a 100 MHz Digital Oscilloscope (Tektronic
model 2430) with a digitizing resolution of 10 bits
and using a time window of 20.48 μsec, and the post
treatment data was performed in MATLAB.

Measurements of wave velocities obtained on
three orthogonal directions on each sample were aver-
aged and analyzed as a function of the porosity only
(figure 3a). Figure 3b shows both the theoretical

a) b)

Fig. 2. Phase velocity as a function of porosity of the four wave modes in isotropic bone medium (a),
and along the axes of symmetry in orthotropic bone sample (b)

a) b)

Fig. 3. Fast (squares) and slow (diamonds) wave velocities averaged over three orthogonal directions on each sample plotted
as a function of bone porosity, compared to the theoretical fast (solid) and slow wave velocities (dashed) in isotropic medium (a);

fast wave velocity (squares) and slow wave velocity data (diamonds) measured in three orthogonal directions on each sample plotted
as a function of the measured bone porosity, and comparison with the theoretical fast (solid) and slow wave velocities (dashed)

in anisotropic bone (F1 = 1.05, F2 = 1.1, F3 = 1.15) (b)
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predictions and experimental wave velocity measure-
ments obtained on three orthogonal directions on each
sample. The theoretical curves were computed for
fabric anisotropy values F1, F2 and F3 equal to 1.05,
1.10 and 1.15, respectively. This choice of fabric aniso-
tropy corresponds to the degree of anisotropy (5–17%)
measured in the whole set of cancellous bone samples in
our previous study [12]. Comparison of experimental
data and theoretical results shows a qualitative agree-
ment for both fast and slow wave measurements and
these theoretical bounds. However, this last analysis is
limited by the fact that the experimental data was ob-
tained measuring the wave propagation in samples
that were not cut aligned to their axes of symmetry.
Therefore, the measured waves on those samples are

not pure wave modes, but quasi-waves. The develop-
ment of the fabric-dependent anisotropic theory of
propagation of quasi-waves in porous media will be
presented in a separate study shortly, and a quantita-
tive analysis of these experimental results would be
performed.

Another important observation in our previous
study of wave propagation in cancellous bone indi-
cated that the fast wave is mostly related to the
propagation in the solid structure and the slow wave
is highly related to the fluid constituent [12]. Figure 4
shows a typical set of signals obtained in a single
direction of a human sample: (i) a well-defined, sin-
gle ultrasound wave excited the sample (figure 4a),
(ii) the signal received after propagating through the

Fig. 4. Ultrasound wave after propagation through a fluid saturated human cancellous bone sample (a),
signal propagation through the same human sample after the water was removed from the pores (b), detected pulse

after propagating in water on a distance identical to the sample’s size (c). Corresponding spectrograms of a human signal
showing the two waves having different frequency compounds and time localization (d), when the fluid

is removed from the pores (e) and when the porous sample is removed and the wave propagates in the fluid only (f).
The color bar indicates the respective power spectra density value (Vrms2)

a) b)

Fig. 5. Phase velocity as a function of porosity of the fast and slow wave modes in isotropic bone medium (a),
and along the axes of symmetry in orthotropic bone sample (b) when the compressibility bulk modulus of the fluid

is considered equal to zero. Under this condition the fluid does not contribute to the wave propagation

a)

b)

c)

d)

e)

f)
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fluid-saturated cancellous bone sample (figure 4b),
(iii) the signal received through the sample when the
water medium was removed (figure 4c) and (iv) the
signal received when the cancellous bone sample
was removed, thus representing the propagation
through the fluid alone (figure 4d). From these fig-
ures, it is clear that propagation through the cancel-
lous bone structure dramatically alters the waveform,
which after propagation is made of at least two dis-
tinguishable waves. When removing the water from
the sample (figure 4c), only the very first part of the
signal remains. On the contrary, when removing the
sample while leaving the transducers in place, this
first signal disappears and the remaining signal is
very similar to the second part of the transmitted
signal of figure 4b. From these results, one may con-
clude that the two waves observed with fluid
saturated cancellous bone correspond in general to:

(i) a first propagation mode related to the presence of
a solid phase within the biphasic material and (ii)
a second wave highly related to the effect of the fluid
phase.

This observation is also verified by analyzing the
wave propagation in the theoretical model when Kf

tends to 0. Figure 5 shows the fast and slow wave
velocities when the compressibility of the fluid tends
to zero, for the isotropic (figure 5a) and the aniso-
tropic cases (figure 5b). Here, the fluid does no longer
contribute to the propagation of the waves, thus, the
fast wave velocity is equivalent to the wave propaga-
tion velocity in the porous solid structure without fluid
(as in figure 4c), and the slow wave does not propa-
gate.

We return to the consideration of the wave mode
transition that occurs for the fast wave at porosities
below about 80% and it is related to the propagation

in the solid bony structure, while the slow wave is
mostly related to the fluid saturating the pores, as
illustrated in figures 2 and 3. The behavior of fast
and slow waves above about 80% porosity follows
the opposite trend, indicating that the fast wave is
mostly related to the propagation in the fluid, and the
slow wave is related to the solid bony structure. Both
experimental measurements and theoretical predic-
tions presented in this study indicate that the fast
wave, when propagating in highly porous samples, is
insensitive to the anisotropy of the cancellous bone
structure and corresponds to the propagation in the
fluid within the pores. The clinical relevance of this
finding is that the measurement of the fast wave,
the wave measured by most clinical densitome-
ters, lacks sensitivity to provide information on
the bone structure when bone becomes osteopo-
rotic.

In addition to the longitudinal waves, the shear
waves predicted by the theoretical model were ana-
lyzed. The two shear waves S1 (circles) and S2 (stars)
have the exact same velocity in the isotropic case
(figure 6a) and demonstrate a linear dependence on
the medium’s porosity. The two shear waves in the
orthotropic medium exhibit a dependence on the
bone’s anisotropy, but smaller than the one observed
in the fast or slow wave velocities (figure 6). How-
ever, the decrease in the S1 and S2 wave velocities as
a function of porosity is monotonic within the whole
range of porosity, and the bone structure anisotropy
can be observed as shear wave velocity differences for
the three analyzed directions (F1, F2 and F3). Since
shear waves cannot propagate in the fluid, S1 and S2
velocities do not exhibit the change in behavior at
about 80% porosity that is observed in the P1 and P2
longitudinal waves (figure 2).

a) b)

Fig. 6. Phase velocity as a function of porosity of the two shear wave modes in isotropic bone medium (a),
and along the axes of symmetry in orthotropic bone samples (b)
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3.5. Wave dispersion
as a function of frequency

Figure 7 shows both the fast and slow wave veloci-
ties as a function of frequency for different values of
porosity (figures 7a, c, e) and fabric (figures 7b, d, f).
In figure 7a, the acoustic dispersion of all four wave-
modes is depicted for a 50% porosity isotropic bone
sample. A strong positive dispersion (velocity in-
creasing with frequency) behavior is observed below
the critical frequency in the slow wave. The disper-
sion of the fast wave is practically negligible at this
porosity level, and the velocity of both fast and slow
waves is constant at frequencies higher than the criti-
cal frequency. Figure 7c depicts the wave dispersion

in an isotropic bone sample with 70% porosity. This
figure shows tendencies that are similar to the ones
shown in figure 7a, but differs in that the velocities of
the fast and shear waves are smaller than the wave
velocities in the 50% porosity medium. Also, a slight
dispersion in the fast wave velocity can be observed
around the critical frequency value, and the slow wave
transition from zero to a constant velocity value occurs
around the same frequency. Figure 7e, for a 90% po-
rosity isotropic medium, demonstrates that in a highly
porous medium, both slow and fast waves are strongly
dispersive. Even more interesting, there also exists
a wave mode transition between the slow and the fast
wave occurring around the critical frequency. The
slow wave has a zero velocity at low frequencies
(does not propagate) and above zero it starts propa-

Fig. 7. Wave dispersion of fast and slow longitudinal modes in an isotropic porous media with 50% (a),
70% (c) and 90% porosity (e); as well as in an anisotropic media at 50% (b), 70% (d) and 90% porosity (f)

a)

c)

e)

b)

d)

f)
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gating with a low speed that increases with the fre-
quency. However, this dispersive behavior of the slow
wave changes drastically and its velocity becomes
constant for higher frequencies (the curve with dia-
monds). The fast wave, in turn, has the opposite be-
havior. It has a constant velocity at low frequencies
and a sharp change in dispersion occurs at exactly the
same frequency the slow wave dispersion changes.
Moreover, it must be noted that, in all cases, the slow
wave velocity tends to zero as the frequency of the
wave approaches zero. At frequencies much higher
than the critical frequency, the fast wave has a con-
stant velocity, which is in fact equal to the velocity in
the fluid phase of the porous medium, in this case
1480–1500 m/s.

The observations characterized by diamonds in
figures 7a, 7c and 7e are also distinguished in figures
7b, 7d and 7f, with the difference that these last in-
clude the role of anisotropy. For each wave mode a set
of three curves is produced; the three curves represent
the wave propagation along the dynamic axes of
symmetry in an orthotropic bone sample (F1, F2 and
F3). In figure 7b, one can distinguish that the fast and
shear waves exhibit changes in their respective ve-
locities as a consequence of the anisotropy. Anisot-
ropy has a mild effect on the slow wave velocity when
the porosity is 50%. The effect of the anisotropy on
the fast and shear waves is smaller when the porosity
increases (figure 7e), and a little more pronounced in
the slow wave than before. Figure 7f, which corre-
sponds to a 90% porosity of anisotropic medium,
shows again a wave mode transition between the fast
and slow waves. The fast wave is non-dispersive and
sensitive to the anisotropy at low frequencies, while
the slow wave becomes the non-dispersive wave
mode and sensitive to anisotropy at high frequencies.
After the critical frequency, the fast wave becomes
dispersive until it reaches the velocity of propagation
of sound in the fluid. In contrast to longitudinal
waves, the shear waves are non-dispersive but sensi-
tive to the medium’s anisotropy.

The critical frequency fcrit changes with both the
porosity and the fabric anisotropy. This result demon-
strates that the transition in the wave mode from non-
dispersive to dispersive is an indicator of the porosity
in the medium. The critical frequency, and thus the
dispersive/non-dispersive behavior of longitudinal
waves, also changes for the three analyzed directions
in the anisotropic cancellous bone. In theory, above
the critical frequency ,/ 2

crit df fπρμ=  both fast and
slow waves may be expected to propagate.

Overall, this analysis demonstrates that the acous-
tic dispersion and the transition between the fast and

slow wave modes depend on both the porosity and the
fabric anisotropy. These structural parameters and the
viscosity of the fluid determine the magnitude of the
viscous friction between the solid and the fluid con-
stituents, and thus the frequency in which the transi-
tion between the low and high frequency domains of
Biot’s theory occurs.

Fig. 8. Ultrasound waves propagated in three orthogonal direc-
tions of the same specimen. Only one wave was observed in the

third direction. This observation is related to a high attenuation of
the slow wave in this direction

The theoretical results shown in figures 2, 3 and 7
could explain our experimental observations that the
slow wave may not be observed at the three orthogo-
nal directions (A, B and C) of the same specimen. We
have hypothesized [12] that two reasons could explain
this observation: (i) the two waves superimpose in the
time domain or (ii) the amplitudes of the fast and slow
waves are very different and settings of the electronics
did not allow observing both of them simultaneously.
Superimposition of the fast and slow waves was
clearly observed in some of the samples, as shown in
figure 8: in the B direction both waves were observed
and could be easily distinguished, while in the A di-
rection, the two waves were found closer to each other
and pulses difficult to isolate. This behavior of wave
superposition was also observed in HOSOKAWA’s
work [10] when changing the ultrasonic propagation
direction within the sample. The anisotropic theoreti-
cal model predicts specific conditions of porosity and
fabric for which the velocities of the fast and slow
wave modes are almost identical, thus supporting the
first interpretation.
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3.6. Wave attenuation as a function
of porosity or frequency

The ultrasonic attenuation coefficient α represents
the amount of energy lost by the ultrasonic beam

during its propagation through the medium due to
absorption. In porous media, the solution of the poro-
elastic Christoffel equation gives complex roots since
absorption is considered in the model. The complex
wave number defines the attenuation coefficient α for
the corresponding wave mode
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The attenuation of longitudinal waves as a func-
tion of porosity is shown in figure 9a for isotropic,
and in 9c for an anisotropic bone sample of 1-cm
size (x2 – x1 = 1 cm) calculated at 1 MHz. Attenua-
tion of the fast wave (squares) is smaller than the
attenuation of the slow wave at porosities below

about 80%. However, the attenuation of both waves
changes in behavior above about 80%, and the slow
wave becomes slightly less attenuated than the fast
wave (figure 9a). The porosity at which this transition
between fast and slow wave occurs is however af-
fected by the fabric anisotropy, as shown in figure 9b.
This observation indicates that there exist a range of
porosity and anisotropy where the absorption-
related attenuation for both waves is of the same
order of magnitude. Therefore, whether both waves
may have similar amplitude and might be observed
simultaneously depends on both the porosity and
anisotropy of the sample.

In addition to the role of the porosity and fabric
anisotropy, the dependence of attenuation on fre-
quency was analyzed. The attenuation of longitudinal
waves versus frequency is shown in figure 10a for
isotropic, and in 10b for an anisotropic bone sample

Fig. 9. Attenuation of longitudinal (a and c) and shear waves (b and d)
as a function of porosity in isotropic bone media (a and b),

and along the axes of symmetry (F1, F2 and F3) in orthotropic bone sample (c and d)

a)

c)

b)

d)
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of 1-cm size and 80% porosity. Attenuation of the
fast wave (squares) is smaller than the attenuation of
the slow wave at low frequencies. However, the at-
tenuation of both waves changes in behavior, and the
slow wave becomes slightly less attenuated than the
fast wave at high frequencies (figure 10a). The fre-
quency at which this transition between fast and slow
wave occurs is determined by the pore diameter,
fluid density and viscosity. Figure 10b shows that the
transition in attenuation between the fast and slow
wave also depends on the fabric. The transition in
attenuation between the fast and slow waves only
occurs at direction F1, but not in F2 and F3, for which
the slow wave remains the most attenuated for all
frequencies.

The implication of these results is that both the
porosity and the fabric play a critical role in the ab-
sorption-dependent attenuation of longitudinal waves.
This theoretical result is also a plausible explanation
for the observation of two waves with a high differ-
ence in their respective amplitude. Figure 11 pro-
vides a signal obtained with a highly porous sample
where the fast wave is almost undetectable. This fast
wave still existed, as demonstrated in figure 11b
where the signal was magnified, and its amplitude
was about 30 times lower than that of the slow wave.

The theoretical results shown in figure 9 indicate that
the fast wave can be more attenuated than the slow
wave at certain conditions of porosity and fabric, and
could explain our experimental observations that one
of the two waves may be overlooked and remain
unmeasured. In figure 11, the undetected wave is the
fast mode, and in figure 8c is the slow wave. Su-
perimposition of the fast and slow waves was thus
clearly predicted by the anisotropic poroelastic
model.

Fig. 11. Case of signals detected in a very porous sample where
(a) the fast wave was almost imperceptible, (b) a higher magnifi-

cation showing the existence of the fast wave

Fig. 10. Wave attenuation as a function of frequency of the fast and slow wave modes in isotropic bone medium (a),
along the axes of symmetry (F1, F2 and F3) in orthotropic bone sample (c), Shear wave modes in isotropic bone medium (b),

and shear waves along the axes of symmetry (F1, F2 and F3) in orthotropic bone sample (d)

a)

c)

b)

d)

a)

b)
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4. Discussion

Anisotropic poroelastic wave propagation theory
was extended in this study by introducing the depend-
ence of the wave motion equations upon fabric, a ten-
sorial descriptor of the porous microarchitecture. So-
lution of the constitutive equations for harmonic
displacements of the solid and fluid constituents leads
to a modified Christoffel equation for anisotropic po-
rous media that includes the acoustic tensor Q, the
solid–fluid interaction tensor C, and the permeability
tensor K(ω). These tensors describe the elastic and
viscous effects in the wave equation, and they all de-
pend on the measurable fabric tensor, F. The modified
Christoffel equation represents an eigenvalue problem
with the sixth order characteristic equation and four
non-zero roots. This system reduces to the isotropic
formulation developed by Biot when the fabric tensor
is isotropic. Two eigenvalues represent the longitudi-
nal wave modes P1 and P2 and the other two corre-
spond to the shear wave modes S1 and S2. Such ei-
genvalues are complex valued, and describe the phase
velocity and attenuation due to absorption of the four
wave modes.

Propagation of plane waves in both isotropic and
anisotropic saturated porous media was analyzed as
a function of the porosity and fabric. Elastic constant
and density values for the mineralized bone tissue and
water were used in the poroelastic model to study the
wave propagation in cancellous bone. Two constants
are used to describe the solid phase (Es and ρ s), three
for the fluid phase (ρ f, K f and μ) and one constant to
relate the porosity to the pore diameter. Two inde-
pendent variables (φ and F), one scalar and the other
tensorial, respectively, were integrated in the model to
study the influence of material properties on both
global and directional changes in the velocity and
attenuation of the four wave modes generated in po-
rous media.

The theoretical model predicted that in isotropic
media with porosity below 80%, the fast wave de-
creases with the porosity. At porosities higher than
80%, the fast wave exhibits a constant velocity, and
the slow wave is the wave mode that is sensitive to
changes in porosity. This result demonstrated that one
of the two wave modes is more sensitive than the
other to changes in porosity; however, there exists
a transition in sensitivity between the two longitudinal
wave modes at approximately 80% porosity. The fast
wave is sensitive to the porosity when the apparent
modulus to density ratio of the solid phase ((1 –
φ)K s/ρ s) is higher than that of the fluid phase

(φKf/ρ f); while the slow wave is sensitive to porosity
when the apparent modulus to density ratio of the
solid phase is smaller than that of the fluid phase.
Therefore, the porosity level at which this transition
between the fast and the slow wave modes occurs is
a consequence of the intrinsic properties of the solid
(Es and ρ s) and fluid ( ρ f, K f and μ) constituents. For
instance, if the properties for the fluid phase are
changed to those of glycerol ( ρ f = 1261 Kg/m3, K s =
4.35 GPa, and μ = 1.5 Pa-s), the transition between
the wave modes happens at 65% and with ethanol at
20 °C ( ρ f  = 789 Kg/m3, K f = 0.902 GPa, and μ =
1.2×10–3 Pa-s), the transition between the wave modes
happens at 90% (figure not shown). The shear wave
modes, in contrast, are not affected by the presence of
the fluid and do not exhibit a change in behavior as
shown in the longitudinal waves. Shear waves are,
however, sensitive to both porosity and anisotropy.

It is important to note that the porosity at which
the fast wave–slow wave mode transition occurs in
longitudinal waves depends on the fabric anisotropy.
The theoretical model predicted that mild changes in
anisotropy would produce this transition to occur in
the porosity range between 70% and 90%. In an or-
thotropic bone sample, the direction with lower
modulus will exhibit a transition at a lower porosity
than the direction with intermediate and high
modulus. Consequently, this theoretical model indi-
cates that an anisotropic bone sample with approxi-
mately 80% porosity may exhibit either a fast or slow
wave that is sensitive or insensitive to the anisotropy
of the medium, depending on the direction being
analyzed.

The wave mode transition observed in the analysis
of velocity as a function of porosity and fabric anisot-
ropy is also observed when the wave velocity is ana-
lyzed as a function of the frequency. The wave mode
transition occurs around the critical frequency in sam-
ples with high porosity (>80%). The fast and slow
wave dispersion changes drastically in behavior at the
frequency where the velocity (and the wave length) of
both wave modes becomes very similar. However, the
frequency at which this transition occurs is also af-
fected by the fabric anisotropy. Therefore, the transi-
tion frequency from being non-dispersive to disper-
sive and vice versa is a consequence of the intrinsic
and extrinsic properties of the medium (material con-
stituents, porosity and fabric anisotropy). The transi-
tion between the low and high frequency regimes
defined by Biot (critical frequency) at which the slow
wave becomes a propagative wave mode occurs at
frequencies much lower than the ones usually em-
ployed for ultrasound characterization of bone. In fact,
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the model predicted very low acoustic dispersion into
the range of porosity, fabric and frequencies generally
used in clinical applications. It is important to notice
that the wave dispersion predicted by the model is
a consequence of the absorption in either isotropic
media or in anisotropic media along the dynamic axes
of the sample. However, dispersion processes may be
more complex when the wave propagation is analyzed
in directions that are not normal to planes of material
symmetry.

The theoretical model also predicted the high vari-
ability of fast and slow wave velocities observed in
bovine and human bones in our experimental study.
Comparison of experimental data and theoretical re-
sults shows a qualitative agreement for both fast and
slow wave velocities. Directional variability within
a sample was effectively explained by the theoretical
model after inclusion of the fabric; this directional
variability could not be explained by the porosity
only. The agreement between experimental and theo-
retical values in this study indicates that despite the
complexity added to the poroelastic theory, a tensorial
variable describing the bone microstructure is required
to explain the directional variability of the wave
propagation with bone architecture. Nonetheless, the
comparison between experiments and theoretical pre-
dictions in this study is limited by the fact that the
experimental data was obtained measuring the wave
propagation in samples that were not cut aligned to
their axes of symmetry. Therefore, the measured waves
on those samples are not pure wave modes, but quasi-
waves. The development of the fabric-dependent ani-
sotropic theory of propagation of quasi-waves in po-
rous media will be presented in a separate study, and
a quantitative analysis of these experimental results
will be performed. Moreover, solid and fluid interac-
tion phenomena should be thoroughly investigated.
For this reason, studies of ultrasonic wave propagation
properties using various solid porous materials mim-
icking cancellous bone structure as well as various
saturating fluids exhibiting different physical proper-
ties (elasticity, density, viscosity) are needed.

The analysis of the wave attenuation as a function
of the porosity, fabric and frequency demonstrated
that there exists a range of porosity and anisotropy – at
a given fixed frequency – in which the attenuation due
to absorption is of the same order of magnitude for
both fast and slow wave modes. Similarly to the lon-
gitudinal wave velocities, a transition in the attenua-
tion of the two wave modes occurs around 80% in an
isotropic medium and within the 70% to 90% range
when anisotropy is considered. The important impli-
cation of this theoretical result is that, depending on

the porosity and the fabric anisotropy of the sample,
one wave mode – either the fast or the slow – may be
highly attenuated with respect to the other and remain
practically undetected as shown in our experimental
study. Notice that the fast to slow wave attenuation
ratio depends on the porosity and fabric anisotropy. In
other words, the direction in which the sample is inter-
rogated may not allow a clear observation of both
waves simultaneously if they superimpose due to
having similar velocities or having very different at-
tenuations. This may explain why the clinical densi-
tometer systems measuring the wave propagation in
the medial-lateral direction at the calcaneum might
not be able to distinguish, thus far, both waves in
vivo. Usually, velocity and attenuation measurement
methods (in clinical densitometers) presuppose that
only one wave propagates in cancellous bone. How-
ever, if only one wave is observable/measurable at
a given direction, then it is even more important to
distinguish whether that wave is the fast or the slow
wave mode, and whether that wave mode is sensitive
or not to the anisotropy of the cancellous porous
structure.

Overall, the results from the present study demon-
strate the ability of the proposed model to describe the
acoustic behavior of the fast and slow wave velocities
in cancellous bone. Both phase velocity and attenua-
tion are dependent on the architecture (porosity and
fabric) and the composition of the medium (solid and
fluid mass density, solid elastic modulus, fluid bulk
modulus and fluid viscosity). For given frequency and
material parameter values, the behaviors of the fast
and slow waves are governed by the extrinsic proper-
ties of the media: the porosity and fabric anisotropy.
These theoretical predictions also corroborate our
experimental observations which indicate that at high
porosities the fast wave is mostly related to the propa-
gation in the fluid constituent and the slow wave is
highly related to the solid structure. Therefore, the
theoretical predictions confirm our observations that
the measurement of the fast wave lacks sensitivity to
provide information on the bone structure when
bone becomes osteoporotic. In contrast to empirical
relationships used by ultrasound densitometers, the
fabric-dependent anisotropic poroelastic model pro-
posed in this study provides a theoretical framework
to predict, analyze and interpret changes in elastic
constants of the trabecular bone structure. Since the
velocity and attenuation predictions provided by this
novel approach depend on the tissue composition,
porosity and architecture of the cancellous bone sam-
ple, it has the potential to characterize bone quality
beyond BMD.
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