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There are a number of methods for analyzing blood flow; however, their applicability and advantages 
are not sufficiently clear. In this research, the characteristics of a discrete erythrocyte method (DEM), 
which is proposed by the present authors, are compared with constitutive equations for blood. The 
Casson model and a pseudo-Casson model are chosen and compared with the DEM. By discussing the 
advantages and disadvantages of DEM, its applicability to blood flow simulation is clarified. The results 
show that the DEM is an appropriate method for simulating the blood flow in small vessels. Moreover, 
the DEM can express certain rheological properties that are not expressed by the constitutive equations.  
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1. Introduction 

The blood flow in an artery is widely investigated because fluid dynamical factors 
play an important role in the development of arterial diseases. The blood flow in large 
arteries is commonly analyzed by means of constitutive equations for blood [1]–[4]. The 
Casson model [5], often used as a constitutive equation for blood, is known as an 
appropriate model for large vessels; however, it cannot express the elasticity of blood. 
Besides, it is not suitable for blood plasticity either, because shear rate and shear stress do 
not correspond one-to-one when the shear stress is lower than the plasticity. Therefore, the 
pseudo-Casson model [2], [6] should be used in order to compute complex flow fields.  

Constitutive equations suffer from another disadvantage – they are not appropriate 
for small arteries. In a small artery, the distribution of erythrocytes in the flow field 
affects their rheological properties; however, the constitutive equations assume 
homogeneity of the fluid. It is, therefore, hard to explain basic phenomena of blood 
flow such as the Fahreus–Lindqvist effect [7], etc. In order to simulate blood flow in 
a small artery, it is necessary to compute simultaneously both the erythrocyte motions 
and the flow field.  
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There are several ways to compute both the erythrocyte motions and the flow 
field simultaneously. One way is to assume an erythrocyte as a rigid elliptic body. 
With this method, it is possible to compute erythrocyte distributions in a flow field 
without a high computational load. However, the erythrocyte deformation cannot be 
expressed in such a way. Therefore, this method cannot be applied in the description 
of the shear-thinning property and the elasticity induced by the deformation of an 
erythrocyte. Another way is to treat the blood as a liquid–liquid two-phase fluid [8]–
[11]. This method allows us to compute the droplet deformation if we accept the 
high computational load. This method, however, cannot model the stress tensor on 
the membrane of an erythrocyte, which results in neglecting basic properties of 
blood. 

The behaviour of a single erythrocyte with a membrane was simulated in detail by 
POZRIKIDIS [12]–[15]. Although his method consistently expresses blood rheology, it 
requires a high computational load for computing practical blood flows, in which five 
million of erythrocytes exist per 1 mm3. It is, therefore, necessary to simplify the 
erythrocyte model so that the stress tensor on the membrane is appropriately expressed 
avoiding 
a high computational load. In order to express the basic properties of blood such as the 
shear-thinning property, elasticity and so on, an erythrocyte model is required to express 
the deformation of an erythrocyte and its membrane. 

Keeping this in mind, the authors proposed a new erythrocyte model as an alternative 
way to simulate blood flow [16], [17]. The model is called the discrete erythrocyte 
method (DEM), in which an erythrocyte is modelled by using beads and springs. Then 
the DEM is modified in such a way that drag points are used instead of beads [18], [19]. 
The drag points represent the fluid dynamical drag force acting on the membrane of an 
erythrocyte, while the springs represent the elasticity of the membrane. This method can 
approximate the deformation of an erythrocyte with its membrane and the distribution of 
erythrocytes in the flow field without a high computational load, therefore, it can express 
the rheological properties of blood sufficiently well.  

There are a number of methods for analyzing the blood flow; however, their 
applicability and advantages are not quite clear. In this research, the characteristics of 
the DEM are compared with the constitutive equations for blood, and the advantages 
and disadvantages are discussed. Then the applicability of the DEM to blood flow 
simulation is clarified.  

2. Constitutive equations 

2.1. Casson model [5] 

The Casson model is often used to derive the constitutive equation for blood. It is 
expressed in one dimension as follows:  
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where: τ – the shear stress, py – the yield stress, µ – the viscosity andγ& – the shear rate. 

2.2. Pseudo-Casson model [2], [6] 

Although the Casson model is often used as the constitutive equation for blood, it 
is very troublesome in a numerical simulation. In the Casson model, the shear rate 
falls to zero, while the shear stress is below the yield stress. Therefore, shear stress and 
shear rate do not correspond one-to-one in this shear stress range. To avoid this 
difficulty, one of the authors proposed the pseudo-Casson model. The dimensionless 
constitutive equation for the pseudo-Casson model is 
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ρ – the density, U – the characteristic velocity, d – the characteristic length, eij – the (i, j) 
component of the deformation rate tensor and Π is defined as Π = eij. eji. 

 

Fig. 1. γτ &−  correlation of constitutive equations 

In this equation, only β is a model constant. The value 1/β adjusts the viscosity in 
the low-shear rate region, i.e. the plug region. If β is small enough, the viscosity in the 
plug region is so large that the results obtained based on the pseudo-Casson model and 
the Casson model are not very different from each other. However, for very small β, the 
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viscosity changes drastically at the boundary of the plug region, which may cause the 
instability in the numerical analysis. According to former research [6], the optimum 
value of β is approximately 0.01. The one-dimensional γτ &−  correlation of the 
constitutive equations is shown in figure 1. 

3. Discrete erythrocyte method [16]–[19] 

3.1. Erythrocyte model 

Most of the blood cells consist of erythrocytes, therefore, in the present model the 
blood is assumed be a suspension of erythrocytes and plasma. An erythrocyte is 
modelled by using six drag points and fifteen springs as shown in figure 2. This kind 
of modelling is similar to the modelling of polymer chains in polymer solutions. In 
order to derive a constitutive equation for polymer solutions, many researchers assume 
a bead–spring model for a polymer chain.  

 

Fig. 2. Modelling an erythrocyte: erythrocyte (a), 
schema of erythrocyte model (b), imaginary appearance of the model (c) 

The drag points in figure 2 express the fluid dynamical drag force acting on the 
membrane of an erythrocyte, and the springs express the elasticity of the membrane. It 
is considered that these two forces dominate the stress tensor of an erythrocyte. In this 
model, the following three points are assumed: (1) the drag force acting at the drag 
point is calculated from the drag coefficients based on Stokes’s law, (2) the inertia of a 
drag point is neglected, (3) a dilute suspension of erythrocytes and plasma is assumed, 
therefore the interaction between erythrocyte models is neglected. 

If the number of drag points is increased, it is possible to imitate the biconcave shape 
of an actual erythrocyte. However, a large number of drag points has a high computational 
load, which we want to avoid. The DEM ought to express the stress tensor generated by 
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an erythrocyte avoiding a high computational load. The DEM is supposed to be applied to 
a practical flow field in which the computational mesh size is larger than half of the 
erythrocyte diameter. Therefore, the erythrocyte model does not need to express higher 
mode deformations by increasing the number of drag points.  

In figure 2, the length of the major axis is set to 1.3D and that of minor axis is set 
to one third of it. D is the length of the major axis of an erythrocyte, which is given 
as 8 µm. The equilibrium length of each spring is given so that the springs generate 
no force under natural conditions shown in figure 2. The drag force acting at the drag 
point is calculated as the sum of the force acting at the drag point and one sixth of the 
force acting at the center of gravity of the erythrocyte model by assuming Stokes’s law.  

The drag coefficients at the drag point are given as Kn = Kh = 1.13 µD Pa⋅s⋅m, and 
the drag coefficients at the center of the gravity are given as Kn = 1.5 µD, Kh = 0, 
where Kh is the drag coefficient against uniform flow in the direction of the major 
axis, Kn – for the minor axis direction, and µ the viscosity of the plasma. The total 
drag coefficients of the erythrocyte model are derived to be: Kn = 8.28 µD, Kh = 6.78 
µD, Ln = 1.91 µD3 and Lh = 1.06 µD3 Pa⋅s⋅m. Lh is the drag coefficient against the 
rotation about the major axis, and Ln for that about the minor axis. These values are 
similar to the drag coefficients of an elliptic body (Kn = 8.28 µD, Kh = 6.78 µD, Ln = 
1.91 µD3 and Lh = 1.38 µD3), whose major and minor axes are D and D/3, 
respectively. Therefore, the erythrocyte model generates drag forces against a uniform 
flow and a rotational flow similar to that of an actual erythrocyte.  

The spring constant of an erythrocyte model is given as 5.0×10–6 N/m. The plot in 
figure 8 confirms that the deformation of an erythrocyte model with this spring 
constant subject to constant shear fields corresponds well to experimental results 
obtained by BESSIS and MOHANDAS [20]. 

3.2. Governing equations 

Since in the DEM, the blood is assumed to be a dilute suspension of erythrocytes 
and plasma, the interactions between erythrocyte models are neglected. A governing 
equation for a drag point i in an erythrocyte model is given by equation (3) that shows 
the balance of the drag force and the spring force:     
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where u is the velocity of plasma, v – the velocity of an erythrocyte model, r – the 
position of the drag point, n – the unit vector in the minor axis direction, I – the length of 
a spring, l0 – the equilibrium length of a spring. The subscript i indicates the position at a 
drag point i, and the subscript g indicates the position at the center of gravity of an 
erythrocyte model. The left side expresses the drag force that is the sum of the force 
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acting at the drag point and one sixth of the force acting at the center of gravity of the 
erythrocyte model. The drag force is calculated from the drag coefficients by assuming 
Stokes’s law. The right side of equation (3) represents the spring force, where the 
subscript j stands for the drag point connected with the point i by the spring. 

The governing equation for the plasma is given as follows: 
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where p is the pressure, ∆V – the volume of a computational cell of a flow field and 
∆N – the number of the drag points in ∆V. The last term in equation (4) denotes the 
reaction from the erythrocyte models in ∆V. By solving equations (3) and (4) 
simultaneously, it is possible to simulate a blood flow without using a constitutive 
equation.  

3.3. Numerical methods 

In order to simulate a blood flow, initially thousands of erythrocyte models are 
randomly put in the flow field with random attitudes. Then the motion of the 
erythrocyte models and the flow field are computed simultaneously. The motion of the 
erythrocyte models and the flow field are calculated three dimensionally. Equation (3) 
is solved by the Runge–Kutta scheme of a fourth-order accuracy, and equation (4) is 
solved by an implicit Euler scheme. At the wall boundary, complete inelastic collision 
is assumed for a drag point. The rebounding and the friction between the drag point 
and the wall are neglected, because the value of the Reynolds number of erythrocyte is 
very small and the collision is mainly dominated by the viscous force of the plasma. 
After a certain period of simulation, the velocity distribution of the flow field 
converges. The computation is continued until this convergence is obtained. 

4. Applicability to the flow field 

The applicability of the constitutive equations and the DEM to flow field 
modelling is listed in table l.  

Table 1. Applicability to flow field 

Flow Field Casson Pseudo-Casson DEM 
Complex geometry no yes Yes 
Large vessel yes yes high load 
Small vessel no no Yes 
Capillary no no no 
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High hematocrit yes yes no 

4.1. Complex geometry 

In the Casson model, the shear stress and the shear rate do not correspond one-to-
one when the shear stress is below the yield stress, therefore, the stress tensor in the 
momentum equation cannot be replaced by the deformation rate tensor. In this case, 
the number of unknown variables, including the stress tensor, is higher than the 
number of equations, which are the continuity equation and the momentum equation. 
Generally it is impossible to solve such simultaneous partial differential equations. 
However, this becomes possible for sufficiently simple flow fields, for example, 
a developed steady flow in a straight pipe. In this flow field, the stress tensor can be 
calculated before knowing the velocity, which makes it possible to divide the flow 
region into a plug region and a non-plug region. Once we divide the flow region, it is 
not so hard to solve the velocity. It is said that the normal flow field is too complex to 
allow us to calculate the stress tensor in advance and that it is impossible to solve it by 
using the Casson model.  

Bearing this in mind, one of the authors proposed a pseudo-Casson model [2], [6]. 
The concept of this model is similar to that of the bi-viscosity model [21] used instead 
of the Bingham model. In the pseudo-Casson model, the shear stress and the shear rate 
always correspond one-to-one, and the number of unknown variables is the same as 
the number of equations. In this case, we can solve a flow field in the same way as for 
other non-Newtonian fluids. It is said that even complex flow fields can be simulated 
by using the pseudo-Casson model.  

The concept of the DEM is similar to that of the Euler–Lagrange method used for 
dispersed two-phase flows. It commonly deals with three-dimensional flow fields with 
or without wall boundaries. 

 

Fig. 3. Blood flow in a small vessel with stenosis by means of the DEM [19] 



I. TAKUJI et al. 28 

Figure 3 [19] is an example that shows a blood flow in a small vessel with stenosis 
by using the DEM. We think that complex flow fields can be simulated by using the 
DEM.  

4.2. Vessel size 

Constitutive equations are appropriate for large vessels, where blood can be 
assumed to be a continuous fluid. On the other band, blood is no longer assumed to be 
a continuous fluid in a small vessel or a capillary, where the erythrocyte size is not 
negligibly small compared with the computational mesh size of a flow field. The 
constitutive equations always assume blood to be a continuous fluid, therefore they are 
not appropriate for small vessels and capillaries.  

The DEM assumes that blood is a suspension of erythrocytes and plasma. This 
method can be used for calculating each erythrocyte motion, therefore it is appropriate 
even for small vessels where the erythrocyte size is not negligibly small compared to 
the computational mesh size for flow field. The DEM can also allow us to compute the 
flow in a large vessel; however, it then has a high computational load. In order to 
avoid high computational load, it seems necessary to employ stochastic simulation 
techniques for huge numbers of erythrocytes. Constitutive equations are, therefore, 
more appropriate for large vessels than the DEM.  

Since the present erythrocyte model has only six drag points, it is impossible to 
express higher mode deformations smaller than half the size of an erythrocyte. The 
computational mesh for a flow field should therefore have a size of at least from 4 
to 8 µm. The diameter of capillaries ranges approximately from 5 to 10 µm. Because 
of the resulting mesh size limitations, it is impossible to apply the DEM to 
a capillary flow.  

4.3. Blood with high hematocrit  

In the blood with high hematocrit, a lot of erythrocytes being suspended in plasma 
interfere with each other. This interference plays an important role in the rheological 
properties of the blood with high hematocrit. The Casson model and the pseudo-
Casson model were proposed so as to express the rheological properties of the blood 
with rather high hematocrit, which were experimentally investigated. In order to adjust 
the constitutive equations to a certain hematocrit level, one just needs to adjust the 
viscosity and the plasticity in equations (1) and (2). Since these constitutive equations 
do suppose the blood with high hematocrit, they are not appropriate for the blood with 
very low hematocrit. 

The present DEM assumes a dilute suspension of erythrocytes and plasma, 
therefore, the pair interaction between erythrocyte models is neglected. In order to 
treat the blood with high hematocrit, it is necessary to consider the interaction between 
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erythrocyte models and to express the reulaux structure for the low shear-rate range. 
This is essential for modelling normal blood with hematocrit of approximately 45%. 
We expect to improve the present DEM taking this interaction. 

5. Rheological properties of the models 

The rheological properties of the constitutive equations and the DEM are listed in 
table 2. 

Table 2. Rheological property of the models 

Rheological property Casson Pseudo-Casson DEM 
Shear-thinning yes yes yes 
Plasticity yes pseudoplasticity no 
Elasticity no no yes 
Erythrocyte deformation no no yes 
Plasma layer no no yes 

5.1. Shear-thinning property 

The Casson and the pseudo-Casson models have a shear-thinning properties as 
shown in figure l.  

 

Fig. 4. Motion of an erythrocyte model subject to 1–s10=y&  

The DEM also has a shear-thinning property, and its mechanism can be explained 
by the deformation of an erythrocyte model. Figures 4, 5 and 6 show the behaviour of 
an erythrocyte model under the constant shear rates of γ& = 10, 1000 and 10000 s–1, 
respectively. There x is the coordinate axis in the flow direction, y the coordinate axis 
in the direction of the velocity change and z the coordinate axis perpendicular to the x- 
and y-axes. For γ& = 10, the erythrocyte model rotates without deformation like a solid 
body. Forγ& = 1000, the model starts to deform and to be stretched in the x direction. 



I. TAKUJI et al. 30 

Forγ& = 1000, the model is always flattened in the x–z plane during the rotation. This 
behaviour shows the characteristics similar to the tank tread motion [22], [23] of an 
erythrocyte.  

 

Fig. 5. Motion of an erythrocyte model subject to 1–s1000=y&  

 

Fig. 6. Motion of an erythrocyte model subject to 1–s00010=y&  

Figure 7 shows the change in a relative viscosity of the DEM, with the plasma 
viscosity subtracted. In this figure, η stands for an apparent viscosity and η0 is that 
at the zero shear rate. It is found that the DEM also has a shear-thinning property, 
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which can be explained as follows. The thickness of the erythrocyte model in the y-
direction decreases with increasing deformation. The decrease of the thickness 
induces a decrease of the force acting on a drag point and a de- 
 

 

Fig. 7. Change of relative viscosity 
and the first normal stress difference coefficient with shear rate (DEM) 

crease of the momentum transport in the y-direction, which results in a decrease of 
the stress components.  

5.2. Plasticity and elasticity 

The Casson model can rigorously express the plasticity of the blood, while the 
pseudo-Casson model cannot express the plasticity sufficiently well. It can only 
express the pseudo-plasticity. Both constitutive equations cannot express the elasticity 
of blood.  

The DEM cannot express plasticity. In the low shear-rate range, the plasticity 
of blood is generated by the reulaux structure, therefore it becomes necessary to 
model the interaction between erythrocyte models in order to express the plasticity. 
But the DEM can express elasticity, because the erythrocyte model is stretched in 
the x-direction in figures 5 and 6, which generates the normal stress difference. In 
figure 7, the change of the relative first normal stress difference coefficient φ /φ 0 is 
also shown, where φ 0 is the first normal stress difference coefficient at the zero 
shear rate. It is found that the first normal stress difference coefficient also shows 
the shear-thinning property. It is well known that the viscosity of blood shows a 
shear-thinning property; however, not much is known about the shear-thinning 
property of the first normal stress difference coefficient. Since viscoelastic fluids 
typically show the shear-thinning property of the first normal stress difference 
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coefficient, it is to be supposed that blood, which is 
a viscoelastic fluid, also shows this property. 

5.3. Erythrocyte deformation and plasma layers 

Constitutive equations assume that blood is a continuous fluid, therefore, they 
cannot express either the deformation or the distribution of erythrocytes.  

The DEM can express the deformation of erythrocytes as shown in figures 4–6. The 
deformation is large in the high shear-rate range, and small in the low shear-rate range. 
The aspect ratio of the projection chart of the erythrocyte model in the x–z plane is 
compared with the experimental results obtained by BESSIS and MOHANDAS [20] under 
the same shear-stress condition, and is shown in figure 8. It is confirmed that the present 
spring constant can consistently express the deformation of an erythrocyte. 

 

Fig. 8. Comparison of aspects ratio obtained by the DEM 
with that reported by BESSIS and MOHANDAS [20] 

The DEM can also express the distribution of erythrocytes. Since the size of an 
erythrocyte model approaches 8 µm, its center of gravity cannot get closer to the wall 
boundary than 4 µm. In the present DEM, the plasma layer appears near the wall with 
a thickness of approximately 5 µm. In a study dealing with the Poiseuille flow 
between flat plates [18], it was found that the DEM showed the Fahreus–Lindqvist 
effect for sufficiently narrow flow fields.  
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6. Conclusions and future projects 

By comparing the DEM with the constitutive equations, it becomes clear that the 
DEM is an appropriate method for simulating the blood flow in small vessels. 
Moreover, the DEM can express elasticity, erythrocyte deformation and plasma layers, 
which are not well expressed by the constitutive equations.  

 

Fig. 9. Improved DEM that represents the interaction 
between erythrocyte models [24] 

Yet the DEM still has some disadvantages compared with the constitutive 
equations. In order to improve the DEM, it is necessary to consider the interaction 
between erythrocyte models and to express the reulaux structure. One example for an 
improved DEM that considers the interaction between erythrocyte models is shown in 
figure 9 [24]. In order to expand DEM applicability, we intend to improve 
continuously the model in the future.  
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