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Abstract 35 

Purpose: Finite element analysis is frequently used for lumbar spine biomechanical 36 

analysis. The primary scope of this work is to illustrate, using finite element analysis, how 37 

the biomechanical behavior of the Transforaminal lumbar Interbody fusion (TLIF), along 38 

with a novel combination of the Interspinous process device (IPD) and pedicle screws, 39 

improves lumbar spine stability. 40 

Methods: In this study, Unilateral Pedicle Screw Fixation (UPSF) and Bilateral Pedicle 41 

Screw Fixation (BPSF) were used. Four FE model was developed using ANSYS software, 42 

as follows: (1) Intact model; (2) TLIF with "U"-shaped Coflex-F IPD (UCF); (3) TLIF with 43 

Coflex-F and UPSF (UCF + UPSF); and (4) TLIF with Coflex-F and BPSF (UCF + BPSF). 44 

The intact model was subjected to four pure moments (10 Nm), and the results were 45 

validated with previous literature data. The intact model results correlated well with the 46 

literature data, and the model was validated. Three surgical models were subjected to 7.5 47 

Nm four pure moments, Flexion (FL), Extension (ET), Lateral bending (LB), and Axial 48 

rotation (AR) and a 280N follower load. 49 

Results: The surgical model results are compared with the intact model. The 50 

comprehensive analysis results show the UCF + BPSF surgical model gave a good 51 

advantage on range of motion, cage stress, Coflex-F stress, and endplate stress compared 52 

among the two models. 53 

Conclusion: This study proposes that the UCF + BPSF system helps to reduce the stress 54 

on the implant and adjacent endplates and gives very good stability to the lumbar spine 55 

under the various static loading conditions. 56 

 57 

Keywords: Finite element analysis, Lumbar, Biomechanics, TLIF, Pedicle Screws, 58 
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Abbreviations 61 

TLIF - Transforaminal Lumbar Interbody Fusion 62 

IPD - Interspinous Process Device 63 

 UPSF - Unilateral Pedicle Screw Fixation 64 

 BPSF - Bilateral Pedicle Screw Fixation 65 

 FE - Finite Element 66 

 UCF - TLIF with "U"-shaped Coflex-F IPD 67 



 

 

 UCF + UPSF - TLIF with Coflex-F and UPSF 68 

UCF + BPSF - TLIF with Coflex-F and BPSF 69 

 IVD - Intervertebral Disc 70 

 L - Lumbar vertebral bodies 71 

 CT - Computed Tomography  72 

 N - nucleus pulposus 73 

 ROM – Range of Motion 74 

 Mvms - Maximum von mises stress 75 

 FL – Flexion, ET – Extension, LB – Lateral Bending, AR – Axial Rotation 76 

 77 

1. Introduction  78 

TLIF is a commonly using surgical procedure for addressing the lower back pain in a 79 

long-term situation [22]. One of its main advantages is its ability to reduce neurological 80 

complications while still allowing the use of a comparatively large Interbody cage via a 81 

small incision [17],[47]. However, it is essential to understand that traditional pedicle screw 82 

fixation systems have limitations. UPSF, BPSF are the two common type of Pedicle Screw 83 

system. It increases motion and stress in the adjacent spinal segments, resulting in adjacent 84 

spinal degeneration over time [11],[33]. 85 

 86 

Long-term complications of the Pedicle Screw system include screw misalignment, 87 

pedicle breakage, loss of correction, and screw loosening [33]. These challenges increase 88 

the demand for surgical technique advancements. According to biomechanical studies, the 89 

pedicle screw system may cause stress concentrations, particularly in the center regions of 90 

the rods and the neck portion of the screws [11]. This highlights the importance of 91 

improving the design and application of pedicle screw fixation to reduce biomechanical 92 

stress and its possible adverse effects. Based on these considerations, additional research 93 

and development are required to improve the effectiveness of TLIF procedures, particularly 94 

pedicle screw fixation procedure [42].  95 

 96 

Surgeons are currently looking into the use of IPDs, as a less invasive procedure that 97 

can replace lumbar fusions [23]. IPDs provides relief from pressure on the canal of the 98 

spinal cord and nerve roots by creating space in between the intervertebral bodies [12], 99 

[38]. The advantage of IPDs over traditional pedicle screw fixation is that they produce 100 

comparable clinical and radiologic results while reducing surgery times, blood loss, and 101 



 

 

hospitalizations [34],[39]. The Coflex-F IPD has been created to assist in fusion surgeries 102 

[47]. According to studies, it is effective at stabilizing the surgical area, particularly during 103 

flexion, and bending motion. Researchers compared its biomechanical behavior with the 104 

characteristics of other fusion methods such as Posterior Lumbar Interbody Fusion and 105 

Anterior Lumbar Interbody Fusion [9],[10]. 106 

 107 

Despite its potential to provide a balance of stabilization and fusion, research suggests 108 

that the UCF has some limitations [22],[33],[47]. These limitations include the level and 109 

effectiveness of fusion achieved, the biomechanical interaction between the techniques, and 110 

the variability in clinical outcomes observed among patients. Understanding these 111 

limitations is critical in order to select the best surgical approach for each individual's 112 

unique spinal condition. Comprehensive literatures shows that IPD and Pedicle Screw 113 

systems not significantly provide stability to all kind of motions with TLIF procedure, it 114 

has some limitation both stabilization systems [9],[10].  115 

 116 

In order to fill these gaps, a new study has been initiated to investigate the 117 

biomechanical behavior of UCF and Pedicle Screw systems. The purpose of this research 118 

study is to investigate how the UCF and Pedicle Screw systems improves biomechanical 119 

behavior under static loading conditions. 120 

 121 

2. Material and Methods 122 

2.1. Development of Lumbar FE - model. 123 

The lumbar spine FE - model was constructed using Computed Tomography (CT) Scan 124 

Images of a 32 year old healthy female volunteer with no prior medical history of spine 125 

injury or degeneration. The CT scan images were used after the volunteer expressed 126 

concern. Creating an FE model that includes the exact dimensions of the lumbar spine and 127 

internal structures is critical for biomechanical investigations [14],[28]. In this 128 

investigation, general and effective methods were applied.  129 

 130 

The CT scan images are imported in DICOM file format into the MIMICS 14.0 131 

software (Materialize, Leuven, Belgium) [25]. To obtain the masks of the intervertebral 132 

disc (IVD) and Lumbar vertebral bodies (L1-L5), MIMICS 14.0 used threshold 133 

segmentation based on the CT data. Extraction of the solid lumbar spine model and export 134 



 

 

as a Standard Triangle Language (STL) file are accomplished through the use of the 135 

masking technique. After that, the STL file was imported into Geomagic Studio 12.0 (3D 136 

Systems, South Carolina, and USA) to perform geometric smoothing and cleanup [4]. 137 

Furthermore, the processed 3D model was imported into Space Claim software 138 

(ANSYS.Inc, Canonsburg, Pennsylvania, United States) for the creation of an 139 

intervertebral body, endplate, and nucleus pulposus (N1-N5).  140 

 141 

Then using Boolean operation surgical implant cage of TLIF was added to the Lumbar 142 

Model [29]. One intact model and three surgical models, totally four models created for 143 

this analysis; (1) Intact, (2) UCF, (3) UCF + UPSF, (4) UCF + BPSF is shown in Figure 144 

1(a-d). The prior research provides a detailed description of the lumbar spine analysis 145 

process [31],[42].  146 

 147 

Figure 1. (a) Intact Lumbar model, (b) Lumbar (L4-L5) surgical model with TLIF implant 148 

and Coflex (UCF), (c) Lumbar (L4-L5) surgical model with TLIF implant, Coflex and 149 

UPSF (UCF + UPSF), (d) Lumbar (L4-L5) surgical model with TLIF implant, Coflex and 150 

BPSF (UCF + BPSF), (e) Intact lumbar model (Meshed View) 151 

 152 

 153 

Table.1: Material property of lumbar spine FE model various parts with its values. 154 

Part Name Young's 

Modulus 

Value 

(MPa) 

Poisson 

Ratio 

Cross 

Section 

Area 

(mm2) 

Density 

(Kg/mm3) 

References 

Cortical Bone 12,000 0.3 -- 1.70 x 10-06 [27] 

[8] 

[3]  

 

Cancellous Bone 100 0.2 -- 1.10  x 10-06 

Posterior Bone 3500 0.25 -- 1.40 x 10-06 

Endplate 24 0.25 -- 1.20 x 10-06 



 

 

The main focus of this analysis is on the biomechanical behaviors of L4-L5. To reduce 155 

the computational time, the L1-L5 is simplified to L3-L5 [30]. The material property of the 156 

lumbar is shown in Table.1. The ligaments are created by using a spring unit (Tension load 157 

only) and the property of Ligament stiffness as shown in Table.2. 158 

 159 

The contact between the bone and IVD is considered as boned contact [7] with Multi 160 

Point Constraint contact formulation and contact between two cartilages is frictional 161 

contact with a frictional coefficient value of 0.2 [20]. The frictional contact is created by 162 

the pure penalty formulation method. The following steps are done to avoid the meshing 163 

error. Tet Mesh is utilized for all elements of the lumbar model to speed up and simplify 164 

the meshing process. The meshing size for the individual parts and no of nodes of each 165 

part of the model as shown in the Table 3.  The process of meshing carried out with 166 

acceptable nodes and elements count. 167 

 168 

 169 

 170 

Table 2 Stiffness of Ligaments in N-mm [13] 171 

Ligaments ALL PLL ISL SSL LF ITL  

L3-L4 40 ± 20 10.5 ± 8 18.1 ± 16 35 ± 11.7 35 ± 6.2 50  

L4-L5 40.5 ± 14 25.8 ± 16 8.7 ± 6.5 18 ± 6.8 27.1 ± 12 50  

 172 

 173 

nucleus_pulposus 1 0.49 -- 1.02 x 10-06  

[15] Annulus Fibrosus 4.2 0.45 -- 1.05 x 10-06 

Anterior Longitudinal Ligament (ALL) 20 0.3 63.7 1.00 x 10-06 

Posterior Longitudinal Ligament (PLL) 20 0.3 20 1.00 x 10-06 [37],[47] 

[5] Ligament Flava (LF) 19.5 0.3 40 1.00 x 10-06 

Interspinal Ligament (ISL) 11.6 0.3 40 1.00 x 10-06 

Supraspinal Ligament (SSL) 15 0.3 30 1.00 x 10-06 

Intertransverse Ligament (ITL) 58.7 0.3 3.6 1.00 x 10-06 

Pedicle screws (Titanium) 110,000 0.3 -- 4.50 x 10-06 

Coflex (Titanium) 110,000 0.3 -- 4.50 x 10-06 

Cage (Titanium) 110,000 0.3 -- 4.50 x 10-06 



 

 

Table.3. Individual meshing properties of the lumbar spine model 174 

Parts 

Element 

size (mm) Element name 

   Node 

count  

Element 

count References 

L3 3 10 node Tet element 20136 12065 

[6],[13],[35] 
 

L4 3 10 node Tet element 21280 12759 

L5 3 10 node Tet element 18220 10882 

IVD3 2 10 node Tet element 13902 8117 

IVD4 2 10 node Tet element 12441 7199 

IVD5 2 10 node Tet element 11910 6851 

N3 2 10 node Tet element 8679 5183 

N4 2 10 node Tet element 7309 4328 

N5 2 10 node Tet element 5945 3433 

 175 

 176 

2.2. Boundary conditions 177 

The boundary conditions are applied with two different conditions, (1) Intact lumbar 178 

model (2) Surgical lumbar model. The L5 lumbar vertebra's lower surface was validated 179 

to remain stationary using a rigid constraint with six degrees of freedom in both models. 180 

It does not experience displacement or rotation when subjected to a moment. This 181 

constraint is consistent with the methodology used in previous research [3]-182 

[5],[8],[15],[21],[27]-[31]. There were two load conditions used. The initial load 183 

conditions were designed to validate the Intact of the finite element (FE) model. L5's 184 

inferior surface was fixed in all directions to ensure stability [46]. 185 

 Figure 2 (a) shows the boundary condition for the intact, at the center of the L3 superior 186 

surface, pure moments of 10 Nm in flexion (FL), extension (ET), lateral bending (LB), 187 

and axial rotational (AR) were then applied. Additionally, the IVD stress and axial 188 

displacement of L4-L5 were compared to prior experimental research by progressively 189 

increasing the preload values (100N, 200N, 300N, and 400 N) on the lumbar model [1].  190 

The second loading condition was applied both intact and surgical models. A 7.5 Nm 191 

moment was applied to the L3 superior surface to simulate four motions such as flexion, 192 

extension, lateral bending, and axial rotation [18]. In addition, a bilateral set of connector 193 

elements applied a 280 N follower load along the curvature of the lumbar spine, 194 

representing partial body weight [47]. In the case of surgical models, displacement control 195 



 

 

was used to achieve the same L3-L5 range of motion as the intact model. Finally, the 196 

calculations included determining the range of motion (ROM) and intervertebral disc 197 

pressure. 198 

 199 

3. Results 200 

3.1. Intact model results 201 

3.1.1. Verification of IVD3 - ROM 202 

The IVD3 of intact model was validated with previous experimental results. The 203 

deformation of intact lumbar model under the four motions are shown in Figure 2(c).  204 

 205 

3.1.2. Calculation of ROM  206 

The rotational angle of L3 & L4 for the intact model is shown in Figure 2(b) [47]. 207 

Range of motion of IVD3 = Angle of rotation of L3 – Angle of rotation of L4 208 

     = 6.0199 – 2.45315 = 3.56675 209 

210 

 211 

Figure 2. (a) Boundary conditions – Intact Model, (b) Angle of rotation of L3 & L4 212 

calculated by ANSYS software. (c) Intact lumbar model deformation plot for four pure 213 

moment (10 Nm). 214 



 

 

 215 

The graphical representation of the ROM of the IVD3 compared with various previous 216 

literature review [2],[41],[25] is shown in Figure 3(a). The Intact lumbar model is 217 

simplified to L3-L5 because of the scope of the present study only considering the L4-L5. 218 

The results shows the present Intact FE model is reliable and valid. 219 

   220 

(a)        (b) 221 

Figure 3. (a) ROM of Intact lumbar spine model (L3-L4) compared with other literature 222 

data. (b) Load Vs Displacement of the present FE model (L4 - L5) with Berkson et al. 223 

 224 

 225 

3.1.3. Verification of Axial displacement: 226 

The axial displacement of the IVD of intact model (L4-L5) with respect to the increased 227 

load as shown in Figure 3(b). The result of load versus displacement is compared with 228 

Berkson et al [2]. The results are accordance with the literature review data. It shows the 229 

present FE model is valid and reliable. 230 

 231 

3.1.4. Verification of Von Mises stress of IVD3 232 

The maximum von mises stress (Mvms) of IVD3 in the intact model is compared with 233 

previous literature reviews [13],[40],[41],[44]. The results are shown in Figure 4 is 234 

comparatively accordance with the literature review data. Therefore, the current intact FE 235 

model proved to be valid and reliable. 236 



 

 

 237 

Figure 4. Comparison of Intact model Mvms (L3-L4) under four pure moment (10 Nm) 238 

with literature review data. 239 

 240 

3.2. Results of surgical model  241 

3.2.1. ROM of Intact vs surgical model. 242 

 243 

Figure 5. Comparison of Surgical mode with Intact model ROM (L3-L4) under four pure 244 

moment (7.5 Nm) with follower load (280N).    245 

 246 

The lumbar spine surgical model with expected range of motion under static loading 247 

conditions is shown in Figure 5. When compared to an intact model, the TLIF procedure 248 

significantly decreased the ROM in all motion conditions. It’s clearly shows that the UCF 249 

+ BPSF provides good stability and has the lowest ROM when compared to all other 250 

models. Compare with intact model, the UCF + BPSF ROM decreased significantly to 251 

64% in FL, 93% in ET, 54% in LB, and 74% in AR. Furthermore, the ROM of the UCF 252 

model by itself is 42%, 57%, 25%, and 49%, respectively. Also, the UCF + UPSF's ROM 253 

is 61%, 88%, 50%, and 71%, respectively. Under all motion conditions, the UCF + BPSF 254 

model has the less amount of ROM motion. Compared to UCF, UCF+UPSF have less 255 



 

 

ROM in all the motion. The ROM of L3-L4 calculated by L3 angle of rotation minus L4 256 

angle of rotation.  257 

 258 

3.2.2. Maximum Von mises Stress  259 

The Maximum Von mises Stress (Mvms) of IVD L3-L4 surgical model is shown in 260 

Figure 6(a), and 7(a). It clearly shows that minimum von mises stress in the axial rotation 261 

motion compare to all other motion. The UCF+BPSF surgical model had maximum stress 262 

value (1.073 MPa) in extension motion and minimum (0.240 MPa) in axial rotation of 263 

intact model. Additionally, UCF + BPSF model showed higher stress in all motions as 264 

compared to UCF + UPSF model. Compared with UCF + UPSF model, the UCF model is 265 

high stress in all motions. Similarly the Mvms of L5-Sacrum has higher stress than L3-L4 266 

is shown in Figure 6(b). 267 

 268 

       (a)                                                 (b) 269 

 270 

(c)             (d) 271 

Figure 6. Comparison of Maximum vonmises stress of : (a) IVD (L3-L4), (b) IVD (L5-S) 272 

(c) Implant Cage, (d) Coflex- F IPD  273 

 274 

In this analysis, surgical model analyzed under four motion conditions. The Mvms of 275 

cage under various motion for the three surgical models is shown in Figure 6(c) & 7(b). It 276 



 

 

shows the UCF had the Mvms (30 MPa) in LB motion compare to all other models. Also 277 

UCF + BPSF model had minimum von mises stress (13.5 MPa) in the ET motion. The 278 

highest von mises stress experienced during lateral bending relative to all other motions. 279 

In ET motion, UCF + UPSF exhibited noticeably higher von mises stress than other 280 

models.  281 

In this investigation, TLIF cages with UCF were implanted in all surgery models. Three 282 

surgical models were analyzed under four motions. The MVMS for UCF is shown in 283 

Figure 6. (d), 7(c).  It clearly shows the MVMS at UCF model under axial rotation motion. 284 

The minimum stress at UCF + BPSF model in flexion motion. UCF model comparatively 285 

higher stress in all motions. In every motion, UCF + UPSF exhibited noticeably higher 286 

von mises stress than UCF + BPSF, according to the comparison of both UCF stress. 287 

      288 

(a)    (b)    (c) 289 

Figure 7. Contour plot of Maximum vonmises stress for: (a) IVD (L3-L4), (b) Implant 290 

Cage (c) Coflex- F IPD 291 

 292 

 The end plate stress is the important parameter for the measuring the biomechanical 293 

behavior of the spine. Figures 8 (a), (b), and (c) shows comparison of L4 inferior end plate 294 

and L5 superior end plate stresses for all surgical and intact model under static loading.  295 

 296 

(a) 297 



 

 

  298 

(b)                                                (c) 299 

Figure 8. (a) Contour plot of Maximum vonmises stress for L4 inferior and L5 superior 300 

end plates (b) Comparison of Maximum vonmises stress of L4 inferior end plate (c) 301 

Comparison of Maximum vonmises stress of L5 inferior end plate. 302 

 303 

Table .4. Overall comparison of surgical model under static loading condition 304 

Overall comparison of biomechanical performance in surgical model under static loading 305 

condition 306 

ROM   UCF alone > UCF+UPSF > UCF+BPSF 307 

IVD stress  UCF+BPSF > UCF+UPSF ≈ UCF alone 308 

Cage stress  UCF+UPSF ≈ UCF alone > UCF+BPSF 309 

UCF stress  UCF alone > UCF+UPSF > UCF+BPSF 310 

End Plate stress  UCF+UPSF ≈ UCF alone > UCF+BPSF 311 

 312 

In the L4 inferior endplate at UCF + UPSF model significantly higher stress in FL, ET, 313 

and LB except axial rotation. Compared to UCF+BPSF, UCF+UPSF have slightly high 314 

stress in FL, ET, and AR except LB. In the L5 superior endplate stress at all the surgical 315 

models have significantly high stress compared to intact model. The UCF alone model and 316 

UCF+UPSF model have equal stress in flexion. UCF+BPSF, significantly high stress 317 

compared to Coflex alone and UCF+UPSF in LB and AR. In flexion and extension it’s 318 

vice versa. 319 

 320 

4. Discussion 321 

The Prior research have shown that IPDs have shown positive results over the short and 322 

long terms [19],[26],[32]. In this investigation, FE models were subjected to four moment 323 

loading conditions. Although UPSF have very good advantages on tissue disruption, less 324 



 

 

blood loss procedure, and the operation time is less, but several biomechanical 325 

investigations have suggested that this technique is significantly less stable than BPSF due 326 

to the only one side fixation point cause asymmetric effect [45].  327 

 328 

The current study shows the similar trends in ROM of surgical models with intact 329 

model. Compared to UCF model, the both UCF + UPSF and UCF + BPSF models have 330 

less in ROM. It happens because of the UPSF and BPSF restrict the motion of the adjacent 331 

lumbar [24]. The Coflex-F device and TLIF model exhibited less stability, particularly 332 

when it came to axial rotation and lateral bending in both directions [22]. In current study 333 

also UCF alone surgical model have maximum ROM compared to all other model, which 334 

shows the instability of UCF model on lumbar spine.  The overall biomechanical behavior 335 

of surgical models as shown in Table.4. The TLIF procedure, slightly raised the stress in 336 

the adjacent IVD’s. The Figure 6(a) and (b) shows that, stress of IVD5 (between the L5 337 

and sacrum(S)) is higher than the IVD3 (between the L3- L4). The implant cage transfer 338 

the load to the adjacent IVD, which increase the stress in the IVD5 [16].  339 

 340 

The UCF alone model allows motions compared to the other two surgical models. 341 

Which increase load on the implant cage, correspondingly the stress is increased in UCF 342 

model compared to the three surgical models cage stress is shown in Figure 6(d) & 343 

7(c).[43] UCF alone model has high Mvms in lateral bending motion. UCF model 344 

comparatively higher stress in all motions. In every motion, UCF + UPSF exhibited 345 

noticeably higher von mises stress than UCF + BPSF, according to the comparison of both 346 

IPD stress. A comprehensive analysis of all the parameters (Table.4) shows that UCF + 347 

BPSF model has improved ROM and stability over the lumbar, IPD and cage. 348 

 349 

Despite the fact that surgical models have their own advantages, they do have 350 

limitations. Because this study only included one unique person's data, the results do not 351 

represent the average number of people in the study. Although the lumbar materials in real 352 

life have nonlinear material properties, the material used in this analysis is linear elastic. 353 

In spite of this, the outcomes won't alter much [47]. Furthermore, the applied follower load 354 

does not have an adverse effect on the lumbar region. Moreover, the degeneration 355 

characteristics were not included in the analysis. The overall results shows, the UCF + 356 

BPSF model have good lumbar stability and minimum stress on Coflex, Implant cage, and 357 

end plates. 358 



 

 

 359 

4.1. Limitations 360 

The primary understanding of this FE study limited it to static structural analysis. Future 361 

research can include additional dynamic loading, such as vibration loading and friction 362 

between the facet joints. Also in this study assumed that the material properties of the 363 

lumbar spine and other parts were considered as linear elastic behavior [47], but in reality 364 

its nonlinear behavior. Despite of that, the predicted results would not significantly 365 

changed with the literatures. In spite of this, the expected outcomes would not materially 366 

alter based on the literature. This study's FE model does not account for spondylolisthesis, 367 

IVD collapsed height, or spine degeneration diseases. The results of this study, which only 368 

employed one distinct FE model, might not be typical of the general population. 369 

 370 

5. Conclusion  371 

In this study, the novel combination of Interspinous Process Device and Pedicle Screws 372 

used to create three surgical conditions UCF alone, UCF + UPSF, and UCF + BPSF were 373 

used to examine the biomechanical behaviors of the TLIF procedure under static loading 374 

conditions. Despite of the surgical models has its own advantages and limitation. Compared 375 

all the surgical models, UCF + BPSF model has very good advantage over the cage, IPD, 376 

end plate, ROM and stability. Introducing the UCF with pedicle screws are provides good 377 

advantageous in clinical practice. It will reduce the patients risk in long term journey.  378 

 379 
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Figure captions. 574 

 575 

Figure 1. (a) Intact Lumbar model, (b) Lumbar (L4-L5) surgical model with TLIF implant 576 

and Coflex (UCF), (c) Lumbar (L4-L5) surgical model with TLIF implant, Coflex and 577 

UPSF (UCF + UPSF), (d) Lumbar (L4-L5) surgical model with TLIF implant, Coflex and 578 

BPSF (UCF + BPSF), (e) Intact lumbar model (Meshed View) 579 

 580 

Figure 2. (a) Boundary conditions – Intact Model, (b) Angle of rotation of L3 & L4 581 

calculated by ANSYS software. (c) Intact lumbar model deformation plot for four pure 582 

moment (10 Nm). 583 

 584 

Figure 3. (a) ROM of Intact lumbar spine model (L3-L4) compared with other literature 585 

data. (b) Load Vs Displacement of the present FE model (L4 - L5) with Berkson et al. 586 

 587 

Figure 4. Comparison of Intact model Mvms (L3-L4) under four pure moment (10 Nm) 588 

with literature review data. 589 

 590 

Figure 5. Comparison of Surgical mode with Intact model ROM (L3-L4) under four pure 591 

moment (7.5 Nm) with follower load (280N).    592 

 593 

Figure 6. Comparison of Maximum vonmises stress of : (a) IVD (L3-L4), (b) IVD (L5-S) 594 

(c) Implant Cage, (d) Coflex- F IPD  595 



 

 

 596 

Figure 7. Contour plot of Maximum vonmises stress for: (a) IVD (L3-L4), (b) Implant 597 

Cage (c) Coflex- F IPD 598 

 599 

Figure 8. (a) Contour plot of Maximum vonmises stress for L4 inferior and L5 superior 600 

end plates (b) Comparison of Maximum vonmises stress of L4 inferior end plate (c) 601 

Comparison of Maximum vonmises stress of L5 inferior end plate. 602 

 603 


